Lecture 18

Classes

Announcements for This Lecture

Assignments Optional Videos

* A4 Friday at midnight Videos 20.1-20.8 today

= Hopefully you are on Task 4 e Videos 20.9-20.10 next time
= That and task 5 are hardest

* Will post AS on Saturday
= Written assignment like A2

e Also Lesson 21 next time

Exams

= Needs material from next Tues

Last week for regrades
* Will post A6 on Monday. = Limit them to valid issues

= Not due until November 14 We will do them eventually

= But it is much longer!

10/24/23 Classes

Recall: Objects as Data in Folders

* An object 1s like a manila folder

e It contains other variables

= Variables are called attributes

= Can change values of an attribute

* It has a “tab” that identifies 1t

= Unique number assigned by Python
= Fixed for lifetime of the object

10/24/23

(with assignment statements)

Classes

Unique tab
1dentifier
ig
X 2.0
y | 3.0
7z 5.0

Recall: Classes are Types for Objects

* Values must have a type

* An object 1s a value

= A class 1s its type

10/24/23

id2

Point3

2.0

~

e (lasses are how we add
new types to Python

class name

3.0

5.0

Classes

Classes
e Point3
- RGB
e Turtle
 Window

Recall: Classes are Types for Objects

* Values must have atype * Classes are how we add
= An object is a value new types to Python
= A class 1s 1ts type

-

id2

In Python3, type and class
are now both synonyms

y 3.0

e Turtle
 Window

10/24/23 Classes

Classes Have Folders Too

Object Folders

Class Folders

« Separate for each instance

Point3

id2

X 2.0
y 3.0
z 5.0

10/24/23

id3

Point3

5.0

7.2

-0.5

Classes

 Data common to all instances

Goes 1nside a

The Class Definition module, just

like a function

definition.

class <class-name>(object):
"""Class specification"""
<function definitions>

<assignment statements>

<any other statements also allowed>

class Example(object):
"""The simplest possible class.""
pass

10/24/23 Classes 7

keyword class
Beginning of a
class definition

The Class Definition

Specification

~L

"""Class specification"""

_

Goes inside a
module, just
like a function
definition.

J

’l class <class-name>(object): —— Do not forget the colon!

more on this later

...but not often used

—

(similar to one [|
for a function) : ..
/<functlon definitions>
to define I7 .
methods <assignment statements>
to define 4 <any other statements also allowed>
attributes

10/24/23

class Example(object):

"""The simplest possible class."™

pass

Classes

Python creates
after reading the
class definition

Recall: Constructors

 Function to create new instances , el id2
id

= Function name == class name

Example

= Created for you automatically

 Calling the constructor:

= Makes a new object folder ,
Will come
= Initializes attributes back to this

= Returns the 1d of the folder

* By default, takes no arguments

= ¢ = Example()

10/24/23 Classes 9

Instances and Attributes

» Assignments add object attributes

_ , e| 1d2
= <object>.<att> = <expression> id2
= Example: e.b =42 Example
» Assignments can add class attributes b [a0

n <class>.<att> = <expression>
= Example: Example.a = 29

* Objects can access class attributes
= Example: print(e.a)
= But assigning it creates object attribute
= Example: e.a =10

e Rule: check object first, then class
10/24/23 Classes 10

Instances and Attributes

» Assignments add object attributes -ID
= <object>.<att> = <expression> id2
= Example: eb =42 —— Not how Example
* Assignments can add ¢ e s b [a0

n <class>.<att> = <expression>
= Example: Example.a = 29

* Objects can access class attributes
= Example: print(e.a)
= But assigning it creates object attribute
= Example: e.a =10

e Rule: check object first, then class
10/24/23 Classes 11

Instances and Attributes

» Assignments add object attributes

e| id2
= <object>.<att> = <expression> id2
= Example: e.b =42 Example
» Assignments can add class attributes b [a2
n <class>.<att> = <expression>
= Example: Example.a = 29 a | 10

* Objects can access class attributes
= Example: print(e.a)
= But assigning it creates object attribute
= Exampleje.a =10

e Rule: check object first, then class
10/24/23 Classes 12

Invariants

 Properties of an attribute that must be true

* Works like a precondition:

* If invariant satisfied, object works properly

" [f not satisfied, object 1s “corrupted”

 Examples:

= Point3 class: all attributes must be floats
= RGB class: all attributes must be ints 1n 0..255

* Purpose of the class specification

10/24/23 Classes

13

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute Iname; The worker last name
Invariant: Iname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"™""

10/24/23 Classes

14

The Class Specification

class Worker(object):
""A class representing a worker in a certain orga,niza,tion<(

Short

summary

Instance has basic worker info, but no salary informa,tior%

More
detail

~

J

Attribute Iname: The worker last name 4 Description }

Invariant: Iname is a string ﬁ Invariant]

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"™""

10/24/23 Classes

15

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info. but no salarv information.

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"™""

10/24/23 Classes

skl Warning: New format since 2019.
el)()]8 exams will be very different.

16

Recall: Objects can have Methods

* Object before the name 1s an implicit argument

- Example: distance
>>>p = Point4(0,0,0) # First point
>>>q = Pointd(1,0,0) # Second point
>>>p = Point4(0,0,1) # Third point

>>> p.distance(r) # Distance between p, r
1.0
>>> (.distance(r) # Distance between g, r

1.41421856:45750951

10/24/23 Classes

Method Definitions

* Looks like a function def ! class Polnt3(object):
o P ""Class for points in 3d space
= Indented inside class . Invariant: is & float
* First param 1s always self 4 Invariant y is a float
= But otherwise the same 5. | Invariant zis a float "
e In a method call: 6 def distance(self,q):
. One | (7 """Returns dist from self to q
n.e. €55 dfgiment i () 8 Precondition: q a Point3"""
= Obj 1n front goes to self 9 agsert type(q) == Point3
« Example: a.distance(b) 10. sqrdst = ((self x-q.x)** +
[b 11. (self.y-q.y)**2 +
12. (self.z-q.2)**2)
13. return math.sqrt(sqrdst)

10/24/23 Classes 18

Methods Calls

- Example: a.distance(b)

) id2

id2

Point3

10/24/23

b

id3
id3
Point3
0.0
3.0
-1.0
Classes

class Point3(object):
"""Class for points in 3d space
Invariant: x is a float
Invariant y is a float
Invariant z is a float """
def distance(self,q):
"""Returns dist from self to q
Precondition: q a Point3"""
assert type(q) == Point3
sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
(self.z-q.2)**2)
return math.sqrt(sqrdst)

19

Methods Calls

- Example: a.distance(b)
a id2 b id3
id2 id3
Point3 Point3
X 1.0 X 0.0
y 2.0 y 3.0
z 3.0 -1.0
Point3.distance 9
self id2
q id3
10/24/23 Classes

class Point3(object):
"""Class for points in 3d space
Invariant: x is a float
Invariant y is a float
Invariant z is a float """
def distance(self,q):
"""Returns dist from self to q
Precondition: q a Point3"""
assert type(q) == Point3
sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
(self.z-q.2)**2)
return math.sqrt(sqrdst)

20

Methods and Folders

class Point3(object):
""Class for points in 3d space

* Function definitions...

= make a folder in heap Invariant: x is a float

n 1 .
assign name as variable Invariant y is a float

= variable in global space

Invariant z is a float """
def distance(self,q):

S o

 Methods are similar...

= Variable in class folder
= But otherwise the same

 Rule of this course

= Put header in class folder

= Nothing else!

10/24/23 Classes 21

Methods and Folders

Visualize | Execute Code | ' Edit Code

class Point3(object):

<< First

"""Class for points in 3d space
Invariant: x is a float
Invariant y is a float
Invariant z is a float e
def distance(self,q):

"""Returns: dist from self to q

Precondition: q a Point3"""
assert type(q) == Point3
sqrdst = ((self.x-q.x)**2 +

(self.y-q.y)**2 +
(self.z-q.z)**2)

return math.sqrt(sqrdst)

< Back = Program terminated

line that has just executed

== next line to execute

10/24/23

Classes

Heap primtives

Globals

global

Point3 | id1

Frames

Use arrows

Objects

id1:Point3 class
hide attributes

distance distance(self, q)

J

Just this

22

Initializing the Attributes of an Object (Folder)

* Creating a new Worker 1s a multi-step process:
= w = Worker() <

= w.lname = 'White'

* Want to use something like

= Iname to 'White', ssn to 1234, and boss to None

e Need a custom constructor

10/24/23

Instance 1s empty

w = Worker('‘White', 1234, None)

" Create a new Worker and assign attributes

Classes

23

Special Method: __init__

w = Worker('White', 12334, None)

def __init__ (self, n, s, b):
"""Tnitializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n
self.ssn = s
self.boss =D

10/24/23

Classes

[Called by the constructor]

id8
Worker
Iname | "White'
ssn 1234
boss| None
24

Special Method: __init__

two underscores

[W — VWULRGL\ VVLLI 1 19ZA NAana)
\ don’t forget self —
de init_ (self, n, s, b):

"""Initializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n
self.ssn = s
self.boss =D

10/24/23

— use self to assign attributes

< +uSSCS

[Called by the constructor]

id8

Iname

SSn

boss

Worker

'White'

1234

None

25

Evaluating a Constructor Expression

3

Worker('White', 1234, None)

Creates a new object (folder)
of the class Worker

= Instance 1s initially empty 1d3
Puts the folder into heap space

Executes the method __init Lz
= Passes folder name to self ssn
= Passes other arguments in order -

= Executes the (assignment)
commands 1n initializer body

Returns the object (folder) name

10/24/23 Classes

Worker

'White'

1234

None

26

Aside: The Value None

* The boss field 1s a problem. varl | ids > 1d5

= boss refers to a Worker object Point3

= Some workers have no boss x | 22

= Or maybe not assigned yet var2 | id6

(the buck stops there) y [>4

 Solution: use value None z | 67

= None: Lack of (folder) name

= Will reassign the field later! ICo :
* Be careful with None values var3 | Nome Tt

= var3.x gives error! X L32

= There is no name in var3 y | 2.0

= Which Point3 to use? 2 | 00

10/24/23 Classes 27

A Class Definition

12
13
14
15
16
17
18
19
20
21

class Example(object):

. self.x = x

def foo(self,y):
X = self.bar(y+1)
return x

def bar(self,y):
selfx =y-1
return self.x

10/24/23

def __init_ (self,x):

>>> g, = Example(3)

-

"

Ignoring the class folder
what does the call stack
and the heap look like?

~

)

Classes

28

Which One is Closest to Your Answer?

A: | B: |
| Bx.__init__ | 13 , | Bx.__init__ | 13
i id1
' self | id1 | x| 3 Example| | | ol | id1 | x| 3
C: D:
id1 . id1 .
Example | | Example | |
x| 8
10/24/23 Classes 29

A Class Definition

12
13
14
15
16
17
18
19
20
21

class Example(object):

. self.x = X

def foo(self,y):
X = self.bar(y+1)
return x

def bar(self,y):
. selfx =y-1

return self.x

10/24/23

def __init_ (self,x):

>>> g, = Example(3)

D:

id1

Example

[What 1s the next step? J

Classes

30

Which One is Closest to Your Answer?

A: | B: ,
| Bx.__init__ | 13 | Bx.__init__ | 13
id1 g id1 ;
Example | | | gelf | idl | x| 3 Example| | | gelf | idl | x| 3
x| 8 I
C: | D: :
| Bx.__init__ |13 | Bx.__init__ | 13
id1 ; idl Z
Example | | x| 3 Example | ! x| 3
x| 8
10/24/23 Classes 31

A Class Definition

12
13
14
15
16
17
18
19
20
21

class Example(object):

. self.x = x

def foo(self,y):
X = self.bar(y+1)
return x

def bar(self,y):
. selfx =y-1

return self.x

10/24/23

def __init_ (self,x):

>>> g, = Example(3)

B:

id1

Ex.__init

13

Example

self

id1

X

[What 1s the next step? }

Classes

32

Making Arguments Optional

class Point3(object):
"""Class for points in 3d space

* We can assign default values
to __init_ arguments

= Write as assignments to Invariant: x is a float

parameters in definition Invariant y is a float

= Parameters with default

values are optional
def __init__(self,x=0,y=0,z=0):

 Examples:
""Tnitializes a new Pointd

= p=Point3() # (0,0,0)
p = Point3(1,2,3) # (1,3,3) 10. celf ¥ = x
p = Point3(1,R) # (1,2,0) 11 selfy =y
p = Point3(y=38) #(0,3,00 19 self.z = 7
p = Point3(1,z=28) # (1,0,3) 13.

1
P
3
4
D. Invariant z is a float """
6
7
8
9

Precond: x,y,z are numbers"""

10/24/23 Classes 33

Making Arguments Optional

class Point3(object):
"""Class for points in 3d space

* We can assign default values
to __init_ arguments

= Write as assignments to Invariant: x is a float

parameters in definition Invariant y is a float

= Parameters with default
values are optional
def __init__(self,x=0,y=0,z=0):

 Examples:
""Tnitializes a new Pointd

= p = Point3() # (0 00O
p= PointS(L%nS in order

1
P
3
4
D. Invariant z is a float """
6
7
8
9

Precond: x,y,z are numbers"""

10. selfx =x
p = Point3(1,2) | Use parameter name} selfy =y

p = Point3(y=3y_When out of order self 7 = 2
p= Point5(1,2=2)i Can mix two }

approaches
10/24/23 Classes 34

Making Arguments Optional

class Point3(object):
"""Class for points in 3d space

* We can assign default values
to __init_ arguments

= Write as assignments to Invariant: x is a float

parameters in definition Invariant y is a float

= Parameters with default

values are optional
def __init__ (self,x=0,y=0,z=

 Examples:

= p = Point3() # (0 00O
p= PointS(L%nS in order

1
P
3
4
D. Invariant z is a float """
6
7
8

9.
10,
p = Point3(1,2) | Use parameter name

— Dni _ h t of ord
p = Point3(y=3 M=
p= PointZ(l,z=2)i Can mix two }

approaches
10/24/23 Classes 35

