
Dictionaries

Lecture 17

Announcements for This Lecture

10/19/23 2Dictionaries

• View the lesson videos
§ Videos 19.1-19.7 today
§ Videos 20.1-20.8 Tue
§ Videos 20.9-20.10 Thu

Assignment 4Optional Videos

• Should be working on it now
§ Tasks 1-3 by Friday
§ Task 4 by Monday
§ Task 5 by Wednesday

Key-Value Pairs

• The last built-in type: dictionary (or dict)
§ One of the most important in all of Python
§ Like a list, but built of key-value pairs

• Keys: Unique identifiers
§ Think social security number
§ At Cornell we have netids: jrs1

• Values: Non-unique Python values
§ John Smith (class ’13) is jrs1
§ John Smith (class ’16) is jrs2

Idea: Lookup
values by keys

10/19/23 Dictionaries 3

Basic Syntax

• Create with format: {k1:v1, k2:v2, …}
§ Both keys and values must exist
§ Ex: d={‘jrs1':'John',’jrs2':'John','wmw2':'Walker'}

• Keys must be non-mutable
§ ints, floats, bools, strings, tuples
§ Not lists or custom objects
§ Changing a key’s contents hurts lookup

• Values can be anything

10/19/23 Dictionaries 4

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['jrs1'] evals to 'John’
§ d['jrs2'] does too
§ d['wmw2'] evals to 'Walker'
§ d['abc1'] is an error

• Can test if a key exists
§ 'jrs1’ in d evals to True
§ 'abc1' in d evals to False

• But cannot slice ranges!

d = {‘jrs1':'John',’jrs2':'John',
 'wmw2':'Walker'}

'wmw2'

id8

'John'

'John'

'Walker'

dict

'jrs2'

'jrs1'

Key-Value order in
folder is not important

id8d

10/19/23 Dictionaries 5

Dictionaries Can be Modified

• Can reassign values
§ d['jrs1'] = 'Jane'
§ Very similar to lists

• Can add new keys
§ d[‘aaa1'] = 'Allen'
§ Do not think of order

• Can delete keys
§ del d['wmw2']
§ Deletes both key, value

d = {'jrs1':'John','jrs2':'John',
 'wmw2':'Walker'}

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'jrs2'

'jrs1'

id8d

10/19/23 Dictionaries 6

Dictionaries Can be Modified

• Can reassign values
§ d['jrs1'] = 'Jane'
§ Very similar to lists

• Can add new keys
§ d[‘aaa1'] = 'Allen'
§ Do not think of order

• Can delete keys
§ del d['wmw2']
§ Deletes both key, value

d = {'jrs1':'John','jrs2':'John',
 'wmw2':'Walker'}

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'jrs2'

'jrs1'

'aaa1' 'Allen'

id8d

10/19/23 Dictionaries 7

Dictionaries Can be Modified

• Can reassign values
§ d['jrs1'] = 'Jane’
§ Very similar to lists

• Can add new keys
§ d[‘aaa1'] = 'Allen'
§ Do not think of order

• Can delete keys
§ del d['wmw2']
§ Deletes both key, value

d = {'jrs1':'John','jrs2':'John',
 'wmw2':'Walker'}

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'jrs2'

'jrs1'

'aaa1' 'Allen'
✗ ✗

id8d

Change key = Delete + Add

10/19/23 Dictionaries 8

Dicts vs Objects

• Can add new variables
• Does not check bounds

of the content variables

• Variables fixed (sort-of)
• Possibly checks bounds

of the content variables

id2

'red' 255

'green' 128

'blue' 0

dict
id2

red 255

green 128

blue 0

RGB

10/19/23 Dictionaries 9

Dicts vs Objects

• Can add new variables
• Does not check bounds

of the content variables

• Variables fixed (sort-of)
• Possibly checks bounds

of the content variables

id2

'red' 255

'green' 128

'blue' 0

dict
id2

red 255

green 128

blue 0

RGB

Objects designed

for safety reasons

10/19/23 Dictionaries 10

Dictionaries: Iterable, but not Sliceable

• Can loop over a dict
§ Only gives you the keys
§ Use key to access value

• Can iterate over values
§ Method: d.values()
§ But no way to get key
§ Values are not unique

for k in d:
 # Loops over keys
 print(k) # key
 print(d[k]) # value

To loop over values only
for v in d.values():
 print(v) # value

10/19/23 Dictionaries 11

Other Iterator Methods

• Keys: d.keys()
§ Sames a normal loop
§ Good for extraction
§ keys = list(d.keys())

• Items: d.items()
§ Gives key-value pairs
§ Elements are tuples
§ Specialized uses

for k in d.keys():
 # Loops over keys
 print(k) # key
 print(d[k]) # value

for pair in d.items():
 print(pair[0]) # key
 print(pair[1]) # value

10/19/23 Dictionaries 12

Other Iterator Methods

• Keys: d.keys()
§ Sames a normal loop
§ Good for extraction
§ keys = list(d.keys())

• Items: d.items()
§ Gives key-value pairs
§ Elements are tuples
§ Specialized uses

for k in d.keys():
 # Loops over keys
 print(k) # key
 print(d[k]) # value

for pair in d.items():
 print(pair[0]) # key
 print(pair[1]) # value

10/19/23 Dictionaries 13

So mostly like loops over lists

Dictionaries and Fruitful Functions

• Dictionaries handled similar to lists
§ Go over dictionary (keys) with for-loop
§ Use accumulator to gather the results

• Only difference is how to access value
§ Remember, loop variable is keys
§ Use keys to access the values
§ But otherwise the same

10/19/23 Dictionaries 14

Dictionary Loop with Accumulator

def max_grade(grades):
 """Returns max grade in the grade dictionary

 Precondition: grades has netids as keys, ints as values"""
 maximum = 0 # Accumulator

 # For each student
 # if student grade exceeds maximum
 # make that grade the new maximum

 return maximum

10/19/23 Dictionaries 15

Dictionary Loop with Accumulator

def max_grade(grades):
 """Returns max grade in the grade dictionary

 Precondition: grades has netids as keys, ints as values"""
 maximum = 0 # Accumulator
 # Loop over keys
 for k in grades:
 if grades[k] > maximum:
 maximum = grades[k]

 return maximum

10/19/23 Dictionaries 16

Another Example

def netids_above_cutoff(grades,cutoff):
 """Returns list of netids with grades above or equal cutoff

 Precondition: grades has netids as keys, ints as values.
 cutoff is an int."""
 result = [] # Accumulator

 # For each student
 # if student’s grade is above cutoff
 # add student to the result

 return result

10/19/23 Dictionaries 17

Another Example

def netids_above_cutoff(grades,cutoff):
 """Returns list of netids with grades above or equal cutoff

 Precondition: grades has netids as keys, ints as values.
 cutoff is an int."""
 result = [] # Accumulator

 for k in grades:
 if grades[k] >= cutoff:
 result.append(k) # Add key to the list result

 return result

10/19/23 Dictionaries 18

Dictionaries and Mutable Functions

• Restrictions are different than list
§ Okay to loop over dictionary to change
§ You are looping over keys, not values
§ Like looping over positions

• But you may not add or remove keys!
§ Any attempt to do this will fail
§ Have to create a key list if you want this

10/19/23 Dictionaries 19

A Subtle Difference

10/19/23 Dictionaries 20

But This is Okay

def add_bonus(grades,bonus):
 """Gives bonus points to everyone in grades

 Precondition: grades has netids as keys, ints as values.
 bonus is an int."""
 # No accumulator. This is a procedure

 for student in grades:
 # Modifies the dictionary, but does not change keys
 grades[student] = grades[student]+bonus

10/19/23 Dictionaries 21

Another Example

def merge(dict1,dict2):
 """Updates dict1 to include the contents of dict2.

 If a key is already in dict1, then assign the max of dict1, dict2

 Precondition: dict1, dict2 have str as keys, int as values."""
 for key in dict2:
 # Looping over dict2; safe to modify dict1
 if key in dict1:
 dict1[key] = max(dict1[key],dict2[key])
 else:
 dict1[key] = dict2[key]

10/19/23 Dictionaries 22

Nesting Dictionaries

• Remember, values can be anything
§ Only restrictions are on the keys

• Values can be lists (Visualizer)
§ d = {'a':[1,2], 'b':[3,4]}

• Values can be other dicts (Visualizer)
§ d = {'a':{'c':1,'d':2}, 'b':{'e':3,'f':4}}

• Access rules similar to nested lists
§ Example: d['a']['d'] = 10

10/19/23 Dictionaries 23

Example: JSON File
{
 "wind" : {
 "speed" : 13.0,
 "crosswind" : 5.0
 },
 "sky" : [
 {
 "cover" : "clouds",
 "type" : "broken",
 "height" : 1200.0
 },
 {
 "type" : "overcast",
 "height" : 1800.0
 }
]
}

• JSON: File w/ Python dict
§ Actually, minor differences

• weather.json:
§ Weather measurements

at Ithaca Airport (2017)
§ Keys: Times (Each hour)
§ Values: Weather readings

• This is a nested JSON
§ Values are also dictionaries
§ Containing more dictionaries
§ And also containing lists

10/19/23 Dictionaries 24

Nested
Dictionary

Nested
List

Nested
Dictionary

JSONs vs Dictionaries

• JSONs look like dictionaries, but are not same
§ JSONs are strings (to send over internet)
§ Dictionaries are a type with its own operations

• But you can go back and forth between them
>>> import json # The json module in Python
>>> d = json.loads(s) # Converts JSON s to dict d
>>> s = json.dumps(d) # Converts dict d to JSON s

• So we often think of the two as the same
§ JSON is to dict as CSV is to nested lists

10/19/23 Dictionaries 25

Navigating this File
{
 "wind" : {
 "speed" : 13.0,
 "crosswind" : 5.0
 },
 "sky" : [
 {
 "cover" : "clouds",
 "type" : "broken",
 "height" : 1200.0
 },
 {
 "type" : "overcast",
 "height" : 1800.0
 }
]
}

10/19/23 Dictionaries 26

• Let d be the dict to left
• Need to access a value
• How do we do it?

Access this
value

A: d['height']
B: d['height']['sky']
C: d['sky']['height']
D: d['sky'][0]['height']
E: I don’t know

Navigating this File
{
 "wind" : {
 "speed" : 13.0,
 "crosswind" : 5.0
 },
 "sky" : [
 {
 "cover" : "clouds",
 "type" : "broken",
 "height" : 1200.0
 },
 {
 "type" : "overcast",
 "height" : 1800.0
 }
]
}

10/19/23 Dictionaries 27

• Let d be the dict to left
• Need to access a value
• How do we do it?

Access this
value

A: d['height']
B: d['height']['sky']
C: d['sky']['height']
D: d['sky'][0]['height']
E: I don’t know

This is a list

Dictionaries and Recursion

• Dictionaries are not sliceable
§ Makes it difficult to do divide and conquer
§ So rare to be used in recursion by itself
§ Often the answer to a recursion, not the input

• However, the key list is sliceable
§ Can recurse on key list, not the dict
§ This requires a helper function
§ Helper is recursive, not the main function

10/19/23 Dictionaries 28

The Recursive Version

def max_grade(grades):
 """Returns max grade in the grade dictionary

 Precondition: grades has netids as keys, ints as values"""

 # WE CANNOT SLICE A DICTIONARY
 # We need to pull out keys and use a recursive helper
 netids = list(grades.keys())

 return max_grade_helper(netids,grades)

10/19/23 Dictionaries 29

The Recursive Version

def max_grade_helper(netids,grades):
 """Returns max grade among given netids

 Precond: netids a list of keys in grades, grades a dict w/ int values"""
 # Process small data
 if len(netids) <= 1:
 return grades[netids[0]] if len(netids) == 1 else 0

 # Break it up into left and right

 # Combine the answers

10/19/23 Dictionaries 30

The Recursive Version

def max_grade_helper(netids,grades):
 """Returns max grade among given netids

 Precond: netids a list of keys in grades, grades a dict w/ int values"""
 # Process small data
 if len(netids) <= 1:
 return grades[netids[0]] if len(netids) == 1 else 0

 # Break it up into left and right
 left = grades[netids[0]]
 right = max_grade_helper(netids[1:],grades)

 # Combine the answers

10/19/23 Dictionaries 31

The Recursive Version

def max_grade_helper(netids,grades):
 """Returns max grade among given netids

 Precond: netids a list of keys in grades, grades a dict w/ int values"""
 # Process small data
 if len(netids) <= 1:
 return grades[netids[0]] if len(netids) == 1 else 0

 # Break it up into left and right
 left = grades[netids[0]]
 right = max_grade_helper(netids[1:],grades)

 # Combine the answers
 return max(left,right)
10/19/23 Dictionaries 32

