10/15/23

Example: Reversing a String

How to Break Up a Recursive Function?

def reverse(s):
"""Returns: reverse of s Hnn

Precondition: s a string"" @
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left =sg[0]
right = reverse(s[1:])

3. Combine the result
return right+left

def commafy(s):

""Returns: string with commas every 3 digits
e.g. commafy('5341267") = '5,341,267"
Precondition: s represents a non-negative int""

Approach 1 Approach 2

< <

commafy commafy
g

How to Break Up a Recursive Function?

How to Break Up a Recursive Function?

def commafy(s):

""Returns: string with commas every 3 digits
e.g. commafy('5341867") = '5,341,267'
Precondition: s represents a non-negative int"""
1. Handle small data.

| returns

2. Break into two parts

left = commafy(s[:-3]) -

right = s[-3:] # Small part on RIGHT Recursive
. Case

3. Combine the result

return left + ' + right

def exp(b, ¢)
"""Returns: b
Precondition: b a float, ¢ > 0 an int""

Approach 1 Approach 2

12256 =12 x

be="b x (be!) be = (bxb)“2 if ¢ even

Raising a Number to an Exponent

Recursion and Objects

def exp(b, ¢) ¢ # of calls
"""ReturnS: bc 0 m
Precond: b a float, ¢ = 0 an int™" 1 1
#b0is 1 Py 5
return 1 = :
32 6
e n n+1
ifc%2=0:
| rotum exp(b*h,c/i2) 32768 is 215

return b*exp(b*b,(c-1)//2) b32768 needs only 215 calls!

* Class Person (person.py)
= Objects have 3 attributes
= name: String
John Sr. || Pamel 277 97
= mom: Person (or None) S i
= dad: Person (or None)

« Represents the “family tree” [oha x| [sane | [Robert | [Etien |

= Goes as far back as known
= Attributes mom and dad
are None if not known
* Constructor: Person(n,m,d)

* Or Person(n) if no mom, dad

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person™"
1. Handle small data.

if p.mom == None and p.dad == None; | John St. || Pamela

| return0

2. Break into two parts
moms =0
if not p.mom == None:
moms = 1+num_ancestors(p.mom)
dads=0
if not p.dad== None:
dads = 1+num_ancestors(p.dad)

|J0thr.| | Jane | |Robert| | Ellen |

3. Combine the result,
return moms-+dads

Example: Palindromes

* String with > 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome

def ispalindrome(s): m

"""Returns: True if s is a palindrome™"

if len(s) < &:
| peturn True
Halvegs not the same; not divide and conquer

ends = s[0] == g[-1]

middle = ispalindrome(s[1:-1])
return ends and middle

Example: More Palindromes

def ispalindrome3(s):
""Returns: True if s is a palindrome

Case of characters and non-letters ignored."" |
return ispalindrome2(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed""
ifg=="

| return s

Combine left and right

if s[0] in string.letters:

| return s[0]+depunct(s[1:])
Ignore left if it is not a letter
return depunct(s[1:])

Use helper functions!

* Sometimes the helper is
a recursive function

* Allows you break up
problem in smaller parts

11

10/15/23

Example: Palindromes

* String with > 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome
* Example:
~ N
AMANAPLANACANALPANAVIA
has to be a palindrome
* Function to Implement:

have to be the same

def ispalindrome(s):
"""Returns: True if s is a palindrome"""

Recursive Functions and Helpers

def ispalindrome?(s):
"""Returns: True if s is a palindrome
Case of characters is ignored}""
if len(s) < &: * Keeps your code simple
| return True and easy to follow

Use helper functions!
* Pull out anything not
part of the recursion

Hal ; jvi onquer
ends = equals_ignore_case(s[0], s[-1])

middle = ispalindrome(s[1:-1])
return ends and middle

def equals_ignore_case(a, b):
‘ "Returns: True if & and b are same ignoring case™"
return a.upper() == b.upper()

10
Hilbert’s Space Filling Curve
Hilbert(1):
on ilbert(1) I_I
Hilbert(2):
2n
Hilbert(n): Heo-1)| |H(n-1)
down down
== 2=
12

