
Recursion

Lecture 15

Announcements for Today

Prelim 1

• Tonight at 7:30 pm
§ A–C in Ives 305
§ D-E in Ives 105
§ F–Q in Statler Aud.
§ R-Z in Uris G01

• Graded by Sun evening
§ Scores will be in CMS
§ In time for drop date

Other Announcements

• Videos: Lesson 17
• Assignment 3 now graded

§ Mean 94.2, Median 97
§ Time: 8.8 hr, StdDev: 5.5 hr
§ But only 486 responses

• Assignment 4 posted Friday
§ Parts 1-3: Can do already
§ Part 4: material from today
§ Due 2 weeks from today

10/12/23 Recursion 2

Support Sessions Monday

• What if your grade is lower than expected?
§ What can you do to improve?
§ Should you still stay in the course?
§ That is the purpose of our support sessions!

• I will hold them all (mostly) day Monday
§ 451 Gates 9:30-11:30am, 1-3pm

• Or meet with other students
§ 8am – 1pm in Gates 114
§ 1:30 – 4:30 pm in Gates 310

10/12/23 Recursion 3

Recursion

• Recursive Definition:
 A definition that is defined in terms of itself
• Recursive Function:
 A function that calls itself (directly or indirectly)

PIP stands for “PIP Installs Packages”

10/12/23 Recursion 4

A Mathematical Example: Factorial

• Non-recursive definition:
n! = n × n-1 × … × 2 × 1
 = n (n-1 × … × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

10/12/23 Recursion 5

for n > 0 Recursive case
Base case

What happens if there is no base case?

Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1

10/12/23 Recursion 6

What happens if there is no base case?

Recursive case

Base case(s)

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
 a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

10/12/23 Recursion 7

A: a8 = 21
B: a8 = 29
C: a8 = 34
D: None of these.

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
 a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

10/12/23 Recursion 8

A: a8 = 21
B: a8 = 29
C: a8 = 34
D: None of these.

correct

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
 a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

10/12/23 Recursion 9

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an
Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
 fibonacci(n-2))

10/12/23 Recursion 10

Recursive case

Base case(s)

Note difference with base case conditional.

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an
Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
 fibonacci(n-2))

• Function that calls itself
§ Each call is new frame
§ Frames require memory
§ ∞ calls = ∞ memory

10/12/23 Recursion 11

n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)
12Recursion

fib(3)

fib(2) fib(1)

fib(0)fib(1)

10/12/23

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)
13Recursion

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end =
the call stack

10/12/23

Recursion vs Iteration

• Recursion is provably equivalent to iteration
§ Iteration includes for-loop and while-loop (later)
§ Anything can do in one, can do in the other

• But some things are easier with recursion
§ And some things are easier with iteration

• Will not teach you when to choose recursion
§ This is a topic for more advanced classes

• We just want you to understand the technique
10/12/23 Recursion 14

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/12/23 Recursion 15

data

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/12/23 Recursion 16

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/12/23 Recursion 17

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

10/12/23 Recursion 18

p e nn e

Two 'e's

p e nn e

One 'e' One 'e'

Divide and Conquer Example

Count the number of 'e's in a string:

10/12/23 Recursion 19

p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's

Divide and Conquer Example

Count the number of 'e's in a string:

10/12/23 Recursion 20

p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's

Will talk about how to break-up later

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combining them should give bigger answer

10/12/23 Recursion 21

Divide and Conquer Example
def num_es(s):
 """Returns: # of 'e's in s"""
 # 1. Handle small data
 if s == '':
 return 0
 elif len(s) == 1:
 return 1 if s[0] == 'e' else 0

 # 2. Break into two parts
 left = num_es(s[0])
 right = num_es(s[1:])

 # 3. Combine the result
 return left+right

“Short-cut” for
 if s[0] == 'e’:
 return 1
 else:
 return 0

10/12/23 Recursion 22

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):
 """Returns: # of 'e's in s"""
 # 1. Handle small data
 if s == '':
 return 0
 elif len(s) == 1:
 return 1 if s[0] == 'e' else 0

 # 2. Break into two parts
 left = num_es(s[0])
 right = num_es(s[1:])

 # 3. Combine the result
 return left+right

“Short-cut” for
 if s[0] == 'e’:
 return 1
 else:
 return 0

10/12/23 Recursion 23

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):
 """Returns: # of 'e's in s"""
 # 1. Handle small data
 if s == '':
 return 0
 elif len(s) == 1:
 return 1 if s[0] == 'e' else 0

 # 2. Break into two parts
 left = num_es(s[0])
 right = num_es(s[1:])

 # 3. Combine the result
 return left+right

“Short-cut” for
 if s[0] == 'e’:
 return 1
 else:
 return 0

10/12/23 Recursion 24

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):
 """Returns: # of 'e's in s"""
 # 1. Handle small data
 if s == '':
 return 0
 elif len(s) == 1:
 return 1 if s[0] == 'e' else 0

 # 2. Break into two parts
 left = num_es(s[0])
 right = num_es(s[1:])

 # 3. Combine the result
 return left+right

“Short-cut” for
 if s[0] == 'e’:
 return 1
 else:
 return 0

10/12/23 Recursion 25

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):
 """Returns: # of 'e's in s"""
 # 1. Handle small data
 if s == '':
 return 0
 elif len(s) == 1:
 return 1 if s[0] == 'e' else 0

 # 2. Break into two parts
 left = num_es(s[0])
 right = num_es(s[1:])

 # 3. Combine the result
 return left+right
10/12/23 Recursion 26

Base Case

Recursive
Case

Exercise: Remove Blanks from a String

def deblank(s):
 """Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
§ If it is the empty string, nothing to do
 if s == '':

 return s

§ If it is a single character, delete it if a blank
 if s == ' ': # There is a space here
 return '' # Empty string
 else:
 return s

10/12/23 Recursion 27

Exercise: Remove Blanks from a String

def deblank(s):
 """Returns: s but with its blanks removed"""

2. Decide how to break it up
 left = deblank(s[0]) # A string with no blanks

right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer
 return left+right # String concatenation

10/12/23 Recursion 28

Putting it All Together

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s
 elif len(s) == 1:
 return '' if s[0] == ' ' else s

 left = deblank(s[0])
 right = deblank(s[1:])

 return left+right

10/12/23 Recursion 29

Handle small data

Break up the data

Combine answers

Putting it All Together

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s
 elif len(s) == 1:
 return '' if s[0] == ' ' else s

 left = deblank(s[0])
 right = deblank(s[1:])

 return left+right

10/12/23 Recursion 30

Base Case

Recursive
Case

Minor Optimization

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s
 elif len(s) == 1:
 return '' if s[0] == ' ' else s

 left = deblank(s[0])
 right = deblank(s[1:])

 return left+right

10/12/23 Recursion 31

Needed second
base case to
handle s[0]

Minor Optimization

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s

 left = s[0]
 if s[0] == ' ':
 left = ''
 right = deblank(s[1:])

 return left+right

10/12/23 Recursion 32

Eliminate the
second base

by combining

Less recursive calls

Following the Recursion

a b cdeblank

10/12/23 Recursion 33

Following the Recursion

a b cdeblank

a b cdeblank

10/12/23 Recursion 34

Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

10/12/23 Recursion 35

Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

b cdeblank

10/12/23 Recursion 36

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

10/12/23 Recursion 37

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/12/23 Recursion 38

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c10/12/23 Recursion 39

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c10/12/23 Recursion 40

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
10/12/23 Recursion 41

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

10/12/23 Recursion 42

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗

10/12/23 Recursion 43

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗
cba

10/12/23 Recursion 44

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗
cba

cba✗

10/12/23 Recursion 45

Following the Recursion

a b c

a

b

c c

c

cb

cb

cba

cba

cba

✗

✗

✗

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/12/23 Recursion 46

Final Modification

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s

 left = s[0]
 if s[0] == ' ':
 left = ''
 right = deblank(s[1:])

 return left+right

10/12/23 Recursion 47

Real work done here

Final Modification

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s

 left = s
 if s[0] in string.whitespace
 left = ''
 right = deblank(s[1:])

 return left+right

10/12/23 Recursion 48

Module string has special
constants to simplify

detection of whitespace
and other characters.

Real work done here

Next Time: Breaking Up Recursion

10/12/23 Recursion 49

