10/11/23

A Mathematical Example: Factorial Factorial as a Recursive Function
* Non-recursive definition: def factorial(n): e n!=n(n-1)!
al=n X n-1 X X2 %1 """Returns: factorial of n. | ol =1
Pre: n > 0 an int"™" i

=n(n-1 X ... X2X1) it
ifn==0:

 Recursive definition: | returnl Base case(s)

n!=n(n-1)! forn>0 Recursive case

o' =1 Base case return n*factorial(n-1)

What happens if there is no base case? What happens if there is no base case?
2
Example: Fibonnaci Sequence Fibonacci as a Recursive Function
 Sequence of numbers: 1, 1, 2,3, 5, 8, 13, ... def fibonacei(n): « Function that calls itself
do @1 ax a3 a4 ds de ""Returns: Fibonacci no. a, = Each call is new frame
= Get the next number by adding previous two Precondition: n = 0 an int"™ « Frames require memory
= What is ag? ifn<=1: = oo calls = oo memory
* Recursive definition: | return 1
. _ 4 R . C fibonacci \i
@n = Gpl T A2 ecursive Lase return (fibonacci(n-1)+ n
"ap=1 Base Case fibonacei(n-2))
=aq =1 ther) B
a4 (2[10 er) ase Case fibonacci ‘ \L fibonacci ‘ u
Why did we need two base cases this time? - "
4
Fibonacci: # of Frames vs. # of Calls Recursion is best for Divide and Conquer
* Fibonacci is very inefficient. Goal: Solve problem P on a piece of data
= fib(n) has a stack that is always <n |
= But fib(n) makes a lot of redundant calls data
Idea: Split data into two parts and solve problem
Path to end =
the call stack data 1 data 2 |
N AN /
Yo Y

Solve Problem P Solve Problem P

Combine Answer!
fib(1) fib(0)

Divide and Conquer Example

10/11/23

Count the number of 'e's in a string:

ple|(n|nje

Three Steps for Divide and Conquer

One'e' One 'e'

1. Decide what to do on “small” data
= Some data cannot be broken up
= Have to compute this answer directly
2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers
= Assume the smaller answers are correct
= Combining them should give bigger answer

Divide and Conquer Example

def num_es(s): “Short-cut” for
""Returns: # of 'e's in s"""
1. Handle small data if 8[0] == 'e™
ifg==" return 1
| return O else:
elif len(s) == 1: return 0
| return 1 if s[0] == 'e' else O
2. Break into two parts s[0] s[1:]

left = num_es(s[0])
right = num_es(s[1:])

(o] [e[n]n]¢]
3. Combine the result

return left+right 0 + 2

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s w/o blanks"""
ifg=="

| return s Handl 1 dat
elif len(s) == 1: andie sma’ data

| return " if s[0] =="'"else s
} Break up the data
>

left = deblank(s[0])
right = deblank(s[1:])

return left+right

9
Minor Optimization
def deblank(s):
"""Returns: s w/o blanks""
ifg=="
| return s
left = s[0] Eliminate the
if s[0] =="" second base
| left=" by combining
right = deblank(s[1:])
return left+right
11

10
Following the Recursion

deblank a b c é a|b|c
Koo] 1) wp
[wsn[T[] w [
m deblank . g n
|E| deblank g n
|X deblank g
=

12

