Module 6

Strings

Advanced String
Expressions

An Interesting Problem

e Characters include punctuation ('Hello!")

* What 1f we want to put a quote 1n a string?

= Example: | 0

O

n

t

= Problem: 'Don't' @ D|o|n
= Solution: "Don't"

e But double quote ¢

= Example: | s

= Problem: "say "Hello""

T P99
oes not always work
al|y "IHje| 1L |L]o|"
slal|y| |B9299

= Solution: 'say "Hello"

An Interesting Problem

e What if we combine the two?

m | s|a|y "I D]lo|n|"|tC|"
* Problem: "say "Don't"" mmp[= =[] | 2999
* Problem: 'say "Don't" §> s|aly "|D|o|n d?

= Solution: ?7??
e Actual solution 1s escape characters

= Way to tell python that a (quote) character 1s in box
= Do this with a backslash: \

= Example: 'Don\'t' @ D|lo|n|"']|t

Other Escape Characters

e What if want to include the backslash?

= Example: '\ |, error
= Solution: '\\ \

= First \ 1s the escape, second 1s the character

= Together they are an escape character

Ch
* There are many other examples ——

single quote

= Often for formatting text \" double quote

= New lines, adding tabs \n new line
\t tab

= Visible with print functions
\\ backslash

Print and Escape Characters

>>> print('"Hello\nWorld")
Hello

World

>>> print('Hello\tWorld")
Hello World

>>> print(‘a\\b\\c")
a\b\c

>>> print("\ \ \\\\\\")
AN

-

-

print can help
you see the “boxes”

~

)

String Slicing

String are Indexed

e Access characters with []
0]
4]
5]
0:2] 1s 'ab' (excludes ¢)
3:]1s 'c d'
e (Called “string slicing”

“ S
" S
" S
" S
S

1s 'a/
1s 'd’

Causces an error

e g ="Hello all'

0

H

e | 1

1

@) a| 1

e What 1s s[3:6]?

A:'lo a
B: '1o'
C:'lo'
D:'o'

CORRECT

E: I do not know

String are Indexed

e s="abc d' e s="a\\b\'c’
0 1 2 3 4 0 1 2 3 4
alb|c d al\N|bl|]"|c

e Access characters with [] ¢ Slicing shows “boxes”

“ S
“ S
“ S
“ S
S

0] is 'a/ = g[1]is "\

4] is 'd’ = g[3]is "\"

8] causes an error e These are one character!
0:2] 1s 'ab' (excludes ¢) = len(s[1])is 1, not 2

R:]1s 'ed = len(s[3]) is also 1

e Called “string slicing” = len(s) is 5, not 7

Other Important Ideas

Negative Indices

Variables as Indices

>>> g ="Hello all’
>>> s[-]_]

il

>>> g[-3]

g

>>>g[1:-1]

'ello al’

>>>g ="Hello all’
>>>x =2

>>>y =17

>>> §[X:y]

'11o a/

>>> g[X+2:Y]

0 g

String Methods

Strings Have Few Functions

e Strings have very few built-in functions
" We have already seen len, print, (and input)
= Not much else without going to modules
e That 1s because strings use methods instead
= Method calls act a lot like function calls
= They are just written somewhat differently
* Why methods and not functions?

= We will see why later in the course

Strings Have Few Functions

e Strings have very few built-in functions

" We have already seen len, print, (and input)

= Not mnch elee withant onino to madnlec

UL Rioht now, only learning to [RE
BYEGY call methods, not define them

The Y

* Why methods and not functions?

= We will see why later in the course

Function Calls vs Method Calls

Function Call Method Call
name(x) string.name()
function argument argument method
name name

Right now, assume

only one argument

Example: upper()

* upper(): Return an upper case copy
>>> g = 'Hello World’

>>> g.upper()

'HELLO WORLD'

>>> g[1:Bl.upper() # Str before need not be a variable
'ELLO’

>>> "gbe’.upper() # Str before could be a literal
'ABC’

* Notice that only argument 1s string in front

9/12/19 Strings

15

Alternative: Introcs

e The introcs module does have string functions

* In fact, it has a function form of upper
>>> import introcs
>>> g = '"Hello World’
>>> introcs.upper(s)
'HELLO WORLD'
e Idea: Alternative 1f you struggle with methods

= But made for a very different type of course
= In this course, we should learn methods

Advanced String
Methods

String Methods

* In a previous video we saw method calls

string.name()

)

argument method
name

 Example: 'Hello'.upper()

* But 1t only has a single argument

* Functions could have multiple arguments

* Can methods have additional arguments too?

Additional Arguments

e Additional arguments go inside of parentheses

string.name(x.,y,...)

N

argument method additional
name arguments

* But first argument (string) 1s always in front

Examples of String Methods

* 8;.index(s,) >>> g = 'ghracadabra’
= Returns position of the >>> g.index('a’)
first instance of 8, in §; 0
>>> g.index('rac’)
* g;.count(sy) 9
= Returns number of times >>> g.count('a’)
S, appears inside of 8; 5

>>> g count('x’
e g.strip() 0 (%)

= Returns copy of s with no

>>> ! : i
white-space at ends a b ".strip()

Ia’ bl

9/12/19 Strings

Examples of String Methods

* 8;.index(s,) >>> g = 'ghracadabra’
= Returns position of the >>> g.index('a’)
first instance of 8, in §; 0

* 3;.count(s,

>>> g count('x'
e g.strip() 0 (%)

= Returns copy of s with no

>>> ! : i
white-space at ends a b ".strip()

Ia’ bl

9/12/19 Strings

Example: upper()

>>> g = 'Hello World’
>>> g.upper()

'HELLO WORLD’ / ™
>>> g[1:5].upper() Replaces

| : introes.upper()
ELLO L y

>>> 'abe'.upper()
'ABC'

Example: count

* Format: s;.count(s,)

* Number of times 8, appears inside of s;
= The string you search for 1s in parentheses!

 Examples:
= 3 ="'abbac'
= g.count('a’) ==
= g.count('c’) ==
= g.count('x') ==
= s.count('ab’) ==

Example: index

* Format: s,.index(s,)
= Position of the first instance of 8, 1n §;
= Same argument order as count_str

 Examples:
= g = "abbac'

= g.index('c") == —
. s.index('a,') - 2 kilf:lreeri Vfriaant }
= g.index('x") CRASHES
= g.index(‘ab") ==

Where To Learn About String Methods?

String Methods

Strings implement all of the common sequence operations, along with the additional methods described
below.

Strings also support two styles of string formatting, o
tomization (see str.format(), Format String Synta
based on C printf style formatting that handles a nar

In the documentation!

correctly, but is often faster for the cases it can handle (printr-s fing rormatccng).

The Text Processing Services section of the standard library covers a number of other modules that pro-
vide various text related utilities (including regular expression support in the re module).

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case
distinctions in a string. For example, the German lowercase letter '8' is equivalent to "ss". Since it
is already lowercase, lower () would do nothingto 'B'; casefold() converts it to "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.

String Processing

A Word Problem

* Suppose you are given a variable s
" You are not told what 1s inside of it

" You only know that it 1s a string

* Told to find the middle third of string
* You can only use function and methods
" Again, no idea what is inside of the string
 What you do has to work for any string
= g ="ghc', answer b’
= g ='"aghedef', answer 1s 'cd’

Implement this Function

def middle(text): String Processing
"""Returns: middle 3% of text
Position, size rounded down e Functions that

Precondition: text is a string"" = Take string as argument

= Produce some value
* lstinteresting functions
Fill this 1n = Focus of Assignment 1

What Can We Do With Strings

* We can slice strings (s[a:b])
* We can glue together strings (+)
* We can use string methods

= We can search for characters

= We can count the number of characters
" We can pad strings

" We can strip padding

* Sometimes, we can cast to a new type

What Can We Do With Strings

* We can slice strings (s[a:b])
* We can glue together strings (+)

4 1 h |

* We can ug
AwApess These will be our

building blocks

" We can acters
" We can pad strings
" We can strip padding

* Sometimes, we can cast to a new type

Getting Started

* The first step 1s always the hardest

= Most students unsure of where to start

= Will have another video series on this

* Idea: Why not work 1n reverse?
= Specification tells you what to return
" Figure the operation you need to get there
= Make a variable if unsure about a step
= Assign that variable on previous line

Example: Getting the Middle Third

def middle(text):

"""Returns: middle 3™ of text
Position and size are rounded down
Precondition: text is a string"""

Return the final answer
return result

Example: Getting the Middle Third

def middle(text):

"""Returns: middle 3™ of text
Position and size are rounded down
Precondition: text is a string"""

Cut out the final answer
result = text[start:end]
return result

Example: Getting the Middle Third

def middle(text):

"""Returns: middle 3™ of text
Position and size are rounded down
Precondition: text is a string"""

Get the end of the middle third
end = 2*size//3

result = text[start:end]

return result

Example: Getting the Middle Third

def middle(text):

"""Returns: middle 3™ of text
Position and size are rounded down
Precondition: text is a string"""

Get the start of the middle third
start = size//4

end = 2*size//3

result = text[start:end]

return result

Example: Getting the Middle Third

def middle(text):

"""Returns: middle 3™ of text
Position and size are rounded down
Precondition: text is a string"""

Get the size of the text
size = len(text)

start = size//4

end = 2*size//3

result = text[start:end]
return result

Testing the Result

def middle(text): >>> middle('abe")
""Returns: middle 3 of text b

Precond: text is a string™"
>>> middle('aabbee')
Get length of text 'bb'
size = len(text)
Start of middle third >>> middle('aaabbbcce’)
start = Size//S lbbbl
End of middle third
end = 2*gize//3
Get the text
result = text[start:end]

Return the result
return result

