Module 5

User-Defined Functions

Purpose of this Video

* Series Goal: Create your own functions
= Not same as designing (a larger course goal)
* Focusing on technical details of writing code
* But need to introduce a lot of terminology
* If you do not know cannot follow lectures
= Will have a glossary on the course web page
* Will also standardize some terminology

= People use words 1n slightly different ways

Basic

Terminology

* Assume familiarity with a function call

* May not remember the exact term

* The name for us

ing a function in python

= Example: round(26.54)

* Arguments are expressions in parentheses

= Kxample: round

(26.54) has one argument

= Example: round

(26.54,1) has two arguments

Procedures vs. Functions

* Most functions are expressions
= The call evaluates to a value
= Can nest or use 1n an assignment statement
= Example: X = round(26.54) puts 2.7 in X
* But some functions are statements
= Example: print('Hello") by itself
= Example: x = print('"Hello") makes x empty
e Latter type of functions are called procedures

= All procedures are function, reverse not true

Fruitful Functions

* What to call functions that are not procedures?
= Historically they were called functions
= So functions and procedures distinct
= But the C language called both types functions
= Python kept this terminology

 We will use the term fruitful function
= Because the function is producing a value

= Taken from Allen Downey’ Think Python

Procedure Definitions

e Goal: Learn to write a function definition

* You know how to call a function
= Python does something when you call it

= How does it know what to do?
e Built-in functions have definitions, but hidden

 In this video, we will focus on procedures

= Procedures are the easier of the two types

= But most of what we say applies to all

Anatomy of a Procedure Definition

def greet(n): } [Function Header]
"""Prints a greeting to the name n |

Precondition: n is a string
representing a person’s name™""" — [Function Body]

text = 'Hello '+n+'l'
print(text)

Anatomy of the Body

def greet(n):
"""Pprints a greeting to the name n
Docstring
Precondition: n is a string —[Specification]
representing a person’s name"" |
text = 'Hello '+n+'l' __[Statements J
print(text) - to execute

Anatomy of the Header

N

def greet(n):

| """Prints a greeting to the name n

Precondition: n is a string
representing a person’s name™"""

text = 'Hello '+n+'l'
print(text)

* Parameter: variable listed within the parentheses of a header

* Need one parameter per argument you expect

Anatomy of the Header

N

def greet(n):
| """Prints a greeting to the name n greet('Walker')

Precondition: n is a string *[/\j_
, : - One argument

representing a person’s name

text = 'Hello '+n+'!"

print(text)

Function Call:

* Parameter: variable listed within the parentheses of a header

* Need one parameter per argument you expect

When You Call a Procedure

» Calling a procedure does the following
= [t evaluates each argument
= It plugs each value 1n the relevant parameter

" [t executes each statement in the body
« DEMO: Copy from file into prompt

>>> greet('Walker')
'Hello Walker!'

When You Call a Procedure

Calling a procedure does the following

= [t evaluates each areument

= It 7[
=]t d Must ente
before you call the

* DEM_ ——eereopTOTTIPY

>>> greet('Walker')
'Hello Walker!'

r procedure definition Meter

procedure

Parameter vs. Local Variables

[[.ast aside j

def greet(n):
"""Prints a greeting to the name n

1B Precondition: n is a string
variable .) nnn
representing a person’s name
text = 'Hello '+n+'l’
print(text)

* Parameter: variable listed within the parentheses of a header

* Local Variable: variable first assigned in function body

Modules: Python Files

* Recall: module 1s a file with Python code
= Typically ends 1n .py
= Edited with a code editor
= Will use Atom Editor for my videos
* You use a module by importing it
= Executes the statements 1n the file

" You can access any variables in that file
= DEMO: File with a single variable

Modules Contain Function Definitions

* Modules also allow you to access functions
* Should be familiar with basic Python modules
= Kxample: math and math.cos
* Those modules have function definitions

* Importing causes Python to read definition

" You can then call the procedure

* But must follow the standard import rules

e DEMO: procedure.greet('Walker')

A Good Workflow to Use

AN D0 B W N

. Write a procedure (function) in a module
. Open up the Terminal

. Move to the directory with this file

. Start Python (type python)

. Import the module

. Call the procedure (function)

Recall: Fruitful Function vs. Procedure

e Procedure: Function call 1s a statement
= Kxample: print('Hello')

e Fruitful Function: Call is expression
= Example: round(?.64)

e Definitions are (almost) exactly the same

= Only difference i1s a minor change to body
* Fruitfuls have a new type of statement
* This 1s the return statement

The return Statement

 Format: return <expression>
= Used to evaluate function call (as expression)
= Also stops executing the function!

" Any statements after a return are 1gnored
* Kxample: temperature converter function

def to_centigrade(x):

"""Returns: x converted to centigrade""
return 5*(x-32)/9.0

Combining Return with Other Statements

def plus(n):
""Returns the number n+1

Parameter n: number to add to
Preconditjon: n is a number"""

x = n+] <= Creates variable x w/ answer
return x \Makes value of x the result

Math Analogy:
* On a math exam, do your work and circle final answer.
e Return 1s same 1dea as indicating your final answer

Combining Return with Other Statements

def plus(n): Return should
""Returns the number n+1 be placed last!

Parameter n: number to add to
Preconditjon: n is a number"""

x = n+] <= Creates variable x w/ answer
return x \Makes value of x the result

Math Analogy:
* On a math exam, do your work and circle final answer.
e Return 1s same 1dea as indicating your final answer

Print vs. Return

Print Return

e Displays value on screen ¢ Defines function’s value

= Useful for testing " Needed for calculations
= Not for calculations = But does not display

def print_plus(n): def return_plus(n):

’ print(n+1) return (n+1)

>>> x = print_plus(?) >>> x = return_plus()

5 >>>

S>> [Nothing }X x| &

Visualization

* You must to learn to think like Python does

= Else you and Python will miscommunicate

= Like a coworker with language/cultural 1ssues

* Good programmers see from Python’s persp.

* Need to build visual models of Python
" You imagine what Python is doing invisibly
= Not exactly accurate; more like metaphores
= We call this skill visualization

A Motivating Example

Function Definition Function Call
8. def plus(n): >>>x =2 =] global var |
9. ""Returns n+1"" >>>y = plus(4)

10. X=n+lﬁ local var]
11. | return x

A Motivating Example

Function Definition Function Call
8. def plus(n): >>>x =2 =] global var |
9. ""Returns n+1"" >>>y = plus(4)
10. | x= n+1ﬁ local var]
Visualization
11. return x
>>S>x =2
Global Space

X P

A Motivating Example

Function Definition

Function Call

8. def plus(n):

9.

10.
11.

"""RetUI’nS n+1||l||l
X =n+l
return x

>>> =2

X ?
>>>y = plus(4)

What is in the box?

~

J

A: 2
B: 4
C:5

A Motivating Example

Function Definition

Function Call

8. def plus(n):

9.

10.
11.

"""RetUI’nS n+1||l||l
X =n+l
return x

>>> =2

X ?
>>>y = plus(4)

What is in the box?

~

J

A:2 Correct
B: 4
C:5

Understanding How Functions Work

e Call Frame: Representation of function call

* A conceptual model of Python

Variables e Statement to execute next

(named boxes) e References a line number
function name mstruction counter
parameters

local variables

When You Call a Function It...

* Creates a new call frame

e Evaluates the arguments

* Creates a variable for each parameter
* Stores the argument in each parameter

* Puts counter at first line after specification

(or f1rst of body 1f no specification)

An Example

Function Definition

Function Call

8. def plus(n):

9.

10.
11.

IIIIIIReturnS n+1|ll|||

X = n+] {—

return x

° ¥y =plus(4)

plus

n

4

/

|

next line
{o execute

|

Next: Execute the Body Until the End

* Process one line of code at a time
= Each time you read a line redraw the frame
= Not a new frame; the frame 1s changing

* Think of 1t as “animating” the frame

* How to process each type of statement:
* Print: Nothing (on screen, not frame)
= Assignment: Put variable in frame

= Return: create a special “RETURN” variable
* Move the 1nstruction counter forward

An Example

Function Definition Function Call
8. def plus(n): e v =plus(4)
9. IlllllReturnS Il"']."""

1
10. x=n+] ¢ =

11. returnx n|4

An Example

Function Definition Function Call
8. def plus(n): e v =plus(4)
9. IIIIIIReturnS Il"']."""
plus

10. | x=n+l

11. return x {m— n|4 x| 5

An Example

Function Definition

Function Call

8. def plus(n):

9. IllIlIReturnS n+1|ll|||
10. x=n+l

11. | returnx

299 {u—

° ¥y =plus(4) [

Nothing

plus

n| 4 X|5

RETURN |5

When You are Done

* Look 1if there 1s a RETURN variable
= Might not be i1f a procedure

= [f so, remember that

* Erase the frame entirely

= All variables inside of frame are deleted
* Including the RETURN

e Function call turns into a value (RETURN)

= Use that in the calling statement

An Example

Function Definition Function Call
8. def plus(n): e v =plus(4)
9. IIIIIIReturnS]_'1+1"""
1
10. x=n+l =
11. | returnx n|4 X|5

P99 4 RETURN]| 5

An Example

Function Definition Function Call
8. def plus(n): e v =plus(4)
9. """RetUPIlS I1+1""" 999
10. x=n+l ERqgy,
11. | returnx Rangy,

Global Space

Variables here X |2 y|5
are not erased

The Python Tutor

tabt « 4+
def plus(n):

"""Ret el .
Wi ﬁ Definition]

1
2
3
4 return X
5
6
7
8

mf{ Global Assignment
N Function Call

\ S

< X
[
T N

Double click the tab to change name, press enter when done.

Visualize ' Execute Code | | Edit Code

First Step of Visualization

Visualize | Execute Code | @ Edit Code

Globals
= 1 def plus(n):
TrPReturns: ntl vy Frames
X = n+l
return x Ready to \
Y =2 Process
y = plus(4) N1t
Definition

Step1of 6 Forward > Last >>

line that has just executed
==p next line to execute

Processing the Global Assignment

Global
Space

Visualize | Execute Code | Edit Code

def plus(n): Globals
rrTReturns kLN ET global
X = n+l < |2
return x
= 9 Frames
o < y = plus(4)

<< First <Back Step3of6 Forward > Last >>

line that has just executed
==p next line to execute

Starting The Function Call

Global
Space

Visualize | Execute Code | Edit Code

Globals
def plus(n):
LU 'lReturnS n+1" LU global
- X =:ntl « |2
return x
x = 2 Frames
y = plus(4) plus
n 4

<< First <Back Step4of6 Forward > Last >3

line that has just executed C 11 F
==p next line to execute a rame

Starting The Function Call

Visualize | Execute Code

[ine number
marked here [=

(sort-of)

<< First

line that has just executed

== next line to execute

def

Edit Code

plus(n):
""?Returns: n+l """
X = n+l
return x

2
plus(4)

Step4 of 6 Forward > Last >>

Globals

gl{ Missing line
numbers!

Fr

plus

Executing the Function Call

Visualize | Execute Code | Edit Code

Globals
def plus(n):
"n"r"Returns n+1""" global
X = n+l x |2
i ¢ return x
5 2 5 Frames
y = plus(4) plus
n 4
x 5
<< First <Back Step6of6 Forward > Last >> Return
value

line that has just executed
==p next line to execute

Special
variable

Erasing the Frame

Visualize @ Execute Code | Edit Code

Global
def plus(n): i
"nn "Returns n+1" "N global
X = n+l x |2
return x y |5
X = 2
- y = plus(4) Fram
As soon as

frame erased

<< First < Back = Program terminated

line that has just executed
==p next line to execute

Working With Tabs

* You can use tabs to simulate modules

= Put function definition in one tab

* Import and call

1n another

e But visualizer will not show frame

= Can only show

a call frame i1f 1n same tab

= This 1s a Iimitation of visualizer

= Under hood, cal

1 frame still made

* DEMO: Split u;

0 code from last example

