
Scripts and Modules

Module 4

Limitations of the Interactive Shell

Variable lost
on quit()

Solution: Use a (Module) File

Python executes
each assignment

in order

Right now limiting to
module files with just
assignment statements

When done, can
access this variable

How Do We Use This File?

• Remember scripts in Module 0!
§ Navigate to a folder; python module.py
§ But does not do anything (it is not a script)

• But you can use it as a module
§ Navigate to folder; python; import module
§ Notice that we do not put the .py on the end

• Importing a module...
§ Executes all of the statements inside
§ Allows us to access the variables assigned

Putting It All Together

Remember
the prefix!

Purpose of Code Editors

• You will need something to edit code files
• How about Microsoft Word?

§ Do not want fonts or formatting
§ Just want to edit plain text

• How about NotePad (W) or TextEdit (M)?
§ Better (and some people use them), but not ideal

• Want something that can help you code
§ Designed to help you look for code mistakes
§ Special purpose program is a Code Editor

Using a Code Editor

• Code Editor is a program to edit code
§ Not limited to Python; supports many langs
§ Can do (some) error checking for you
§ Colors text in ways we talk about later

• There are many popular code editors
§ Two most popular: Atom Editor, VS Code
§ We prefer Atom Editor

• Best python support out of box
• (Almost) the same on all computers

Atom Editor

Getting Started with Atom

• Double click on Atom Editor
§ You will see a lot of windows
§ Can close the tabs by clicking at the top

• Can open a file in two ways
§ Select Open from the menu on computer
§ Drag and drop on to the application icon

• When you open, folder to the left
§ Lists all of files in folder
§ Can click on any to open

File Organization

File

Folder

• This is a natural way to program
§ We organize related Python files in folders
§ Can also open the whole folder, not file

Final Word on Workflow

• Python programmers have two windows open
§ The Code Editor
§ Terminal
§ Often like them side by side
§ Do not recommend different desktops
§ Swiping back and forth can get confusing

• Often will have a third window open
§ The browser or the documentation
§ This one is okay in a different desktop

The Basic Elements

Module Contents

""" A simple module.

This file shows how modules work
"""

This is a comment
x = 1+2
x = 3*x
x

Single line comment
(not executed)

Docstring (note the Triple Quotes)
Acts as a multiple-line comment
Useful for code documentation

Commands
Executed on import

Not a command.
import ignores this

The Basic Elements

Module Contents

""" A simple module.

This file shows how modules work
"""

This is a comment
x = 1+2
x = 3*x
x

Python Shell

>>> import simple
>>> x
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>> simple.x
9
>>> help(simple)

“Module data” must be
prefixed by module name

Prints docstring and
module contents

Modules Can Import Modules

"""
A module that imports another module.
"""
Import a standard python module
import math
x = math.cos(0)

Import a user-defined module
import temp
y = temp.to_centigrade(32.0)

Standard
Module

User-Defined
Module

Can Use temp w/o Understanding It

But must be
in same folder

Recall: Scripts

• Script is a file containing Python code
§ Ends with the suffix .py

§ Run it by typing: python <script>
§ Gave you several examples at course start

• But modules contain Python code too!
§ Are they also scripts?

§ What is the difference between them?

Understanding the Difference

Module

• Provides functions, variables
§ Example: temp.py

• import it into Python shell
>>> import temp
>>> temp.to_fahrenheit(100)
212.0
>>>

Script

• Behaves like an application
§ Example: hello_app.py

• Run it from command line:
python hello_kivy.py

Files are the same. Difference is how you use them.

Scripts and Print Statements

module.py

""" A simple module.

This file shows how modules work
"""

This is a comment
x = 1+2
x = 3*x
x

script.py

""" A simple script.

This file shows why we use print
"""

This is a comment
x = 1+2
x = 3*x
print(x)Only difference

Scripts and Print Statements

module.py script.py

• Looks like nothing happens

• Python did the following:
§ Executed the assignments

§ Skipped the last line
(‘x’ is not a statement)

• We see something this time!

• Python did the following:
§ Executed the assignments

§ Executed the last line
(Prints the contents of x)

Scripts and Print Statements

module.py script.py

• Looks like nothing happens

• Python did the following:
§ Executed the assignments

§ Skipped the last line
(‘x’ is not a statement)

• We see something this time!

• Python did the following:
§ Executed the assignments

§ Executed the last line
(Prints the contents of x)

When you run a script,

only statements are executed

The Problem Working with Scripts

• When scripts run we do not see a lot
§ We see any print statements they make
§ But we cannot see any of the variables
§ Or any of the function calls

• This is can make it hard to find bugs
§ Particularly for the project you are working on
§ If something wrong, cannot see it

• Once again, an argument for visualization

Visualizing Scripts: The Python Tutor

Visualizing Scripts: The Python Tutor

Contents

Output

Variables

The Problem Statement

• Right now, our scripts are not very interesting
§ We can introduce randomness, but still limited

• Typical programs interact with the user
§ The user gives input (mouse, typing)
§ Program does something different in response

• Recall: we do that with input(msg)
>>> input('Type something: ')
Type something: abc
'abc'

Evaluates to
what is typed

Numeric Input

>>> x = input('Number: ‘)
Number: 3
>>> x
'3'
>>> x + 1
TypeError: must be str, not int
>>> x = int(x)
>>> x+1
4

Convert it to the
type you want

