Module 4

Scripts and Modules

Limitations of the Interactive Shell

®0®® wmwhite — python — 80x24

[[wmwhite@Rlyeh]:~ > python

Python 3.7.4 (default, Aug 13 2019, 15

[Clang 4.0.1 (tags/RELEASE_401/final)]

Type "help", "copyright", "credits" or

>>> x = 1+2

>>> x = 3%X

>>> X

9

>>> quit()

[[wmwhite@Rlyeh]:~ > python

Python 3.7.4 (default, Aug 13 2019, 15

[Clang 4.0.1 (tags/RELEASE_401/final)]

Type "help", "copyright", "credits" or

[>>> X

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>> ||

:17:50)
:: Anaconda, Inc. on darwin
"license" for more information.

:17:50)
:: Anaconda, Inc. on darwin
"license" for more information.

Variable lost
on quit()

Solution: Use a (Module) File

(N N] @ module.py — ~/Documents/Professional/Courses/CS-1110/Videos/module4/demos
Project module.py X
X = 1+2
X = 3%X

Python executes
each assignment
in order

When done, can
access this variable

KRight now limiting to

module files with just

assignment statements
\)

module.py 3:1 LF UTF-8 Python OGitHub -0~ Git (0)

How Do We Use This File?

 Remember scripts in Module 0!

= Navigate to a folder; python module.py

= But does not do anything (it 1s not a script)
* But you can use it as a module

= Navigate to folder; python; import module
= Notice that we do not put the .py on the end

e Importing a module...

= Executes all of the statements inside

= Allows us to access the variables assigned

Putting It All Together

demos — python — 80x24

Last login: Fri Aug 14 13:46:01 on ttys000

[[wmwhite®Rlyeh]:demos > python

Python 3.7.4 (default, Aug 13 2019, 15:17:50)

[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import module

>>> module.x

Remember
the prefix!

Purpose of Code Editors

You will need something to edit code files
How about Microsoft Word?

* Do not want fonts or formatting
= Just want to edit plain text

How about NotePad (W) or TextEdit (M)?

= Better (and some people use them), but not 1deal

Want something that can help you code
= Designed to help you look for code mistakes
= Special purpose program is a Code Editor

Using a Code Editor

* Code Editor 1s a program to edit code
= Not limited to Python; supports many langs
= Can do (some) error checking for you

= Colors text in ways we talk about later

* There are many popular code editors

* Two most popular: Atom Editor, VS Code

" We prefer Atom Editor
e Best python support out of box

* (Almost) the same on all computers

Atom Editor

000 & rom x [
€« C @& atom.io * 08 «» @ :

Packages Themes Documentation Blog Discuss

macOS

A hackable text editor for the 21st Century

Getting Started with Atom

 Double click on Atom Editor
= You will see a lot of windows

= Can close the tabs by clicking at the top
e Can open a file in two ways

= Select Open from the menu on computer

= Drag and drop on to the application icon

* When you open, folder to the left

= [ists all of files in folder

= Can click on any to open

File Organization

¥ module.py — ~/Desktop/module5/unit2

ccccccc
A simple module.

This file shows how modules work

Author: Walker M. White (wmw2)
Date: July 31, 2018

Folder i
X = 3%kX

File

e This 1s a natural way to program
= We organize related Python files in folders

= Can also open the whole folder, not file

Final Word on Workflow

e Python programmers have two windows open
= The Code Editor
" Terminal
= Often like them side by side
* Do not recommend different desktops

= Swiping back and forth can get confusing

e Often will have a third window open

I'he browser or the documentation

T'his one 1s okay in a different desktop

The Basic Elements

Module Contents

A simple module. Docstring (note the Triple Quotes)
Acts as a multiple-line comment

This file shows how modules work __ Usetul for code documentation

<[Single line comment]
This is a comment (not executed)

X = 1+2 <(Commands]

x = B*x Executed on import

X Not a command.
import ignores this

The Basic Elements

Module Contents Python Shell

" A simple module. >>> import simple
>>> X
This file shows how modules work Traceback (most recent call last):

o File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

This i “Module data” must be >>> simple.x
X = 1+2| prefixed by module name 9

— 2% .
X =6 X[Prints docstring and 7 >>> help(simple)

X module contents

Modules Can Import Modules

A module that imports another module.

Import a standard python module

import math
x = math.cos(0) Standard
Module

Import a user-defined module

import temp
y = temp.to_centigrade(32.0) | User-Defined]
Module

Can Use temp w/o Understanding It

unit3 — eCornell — python — 96x30

[>>> import temp
[(>>> help(temp)
Help on module temp:

NAME
temp - Conversion functions between fahrentheit and centrigrade

DESCRIPTION
This module shows off two functions for converting temperature back and forth
between fahrenheit and centigrade. It also shows how to use variables to
represent "constants", or values that we give a name in order to remember them
better.

Author: Walker M. White (wmw2)
Date: July 31, 2018

FUNCTIONS
to_centigrade(x)
Returns: x converted to centigrade

But must be
syl 11 same folder

to_fahrenheit(x)

The value returned has type float.

[>>> temp.to_centigrade(32.0)
0.9

S |

Recall: Scripts

e Script is a file containing Python code
* Ends with the suffix .py
= Run 1t by typing: python <script>
= Gave you several examples at course start
* But modules contain Python code too!

= Are they also scripts?

= What is the difference between them?

Understanding the Difference

Module Script
* Provides functions, variables ¢ Behaves like an application
= Example: temp.py = Example: hello_app.py
 import 1t into Python shell * Run it from command line:
>>> import temp python hello_kivy.py
>>> temp.to_fahrenheit(100) B
«18.0 Hello World!
>>>

[Files are the same. Difference 1s how you use them. }

Scripts and Print Statements

module.py

script.py

""" A simple module.

This file shows how modules work

This is a comment

X =1+2
X =38*X
X

Only difference

""" A simple seript.

This file shows why we use print

This is a comment

X =142
X=38*x
print(x)

Scripts and Print Statements

[J
module.py script.py
N N modules — -bash — 62x24 N N modules — -bash — 62x24
[wmwhite@Ryleh] :modules > python module.py B [[wmwhite@Ryleh]:modules > python script.py
9
[wmwhite@Ryleh]:modules > [

[wmwhite@Ryleh]:modules > [

* We see something this time!

e Python did the following:

= Executed the assignments

* Looks like nothing happens
e Python did the following:

= Executed the assignments
= Executed the last line

= Skipped the last line
(Prints the contents of X)

(‘X’ 1S not a statement)

Scripts and Print Statements

module.py script.py

[N N] modules — -bash — 62x24 [N N] modules — -bash — 62x24

[wmwhite@Ryleh]:modules > python module.py B [wmwhite@Ryleh]:modules > python script.py
[wmwhite@Ryleh]:modules > [9
[wmwhite@Ryleh]:modules > [

'm

= Executed the assignments

= Skipped the last line = Executed the last line

(‘X’ 1S not a statement) (Prints the contents of X)

The Problem Working with Scripts

* When scripts run we do not see a lot

= We see any print statements they make
= But we cannot see any of the variables

= Or any of the function calls

e This 1s can make it hard to find bugs

= Particularly for the project you are working on

= If something wrong, cannot see it

* Once again, an argument for visualization

Visualizing Scripts: The Python Tutor

Visualize | Execute Code @ Edit Code

" Globals

A simple script. global

This file shows why we use print. I
Frames

Author: Walker M. White (wmw2)
Date: July 31, 2018

X = 1+2 # I am a comment
X = 3*x
print(x)

<< First <Back = Program terminated Forward > Last >>

line that has just executed
== next line to execute
Program output:

9

Visualizing Scripts: The Python Tutor

Visualize | Execute Code @ Edit Code

Globals
A simple script. global

x |9
This file shows why we use print.
Author: Walker M. White (wmw2) 5

Date: July 31, 2018

Variables }

X = 1+2 # I am a comment
X = 3*x
print(x)

[Contents

line that has just executed
= next line to execute

gram terminated Forward >

Program outp

9 Output }

The Problem Statement

e Right now, our scripts are not very interesting
= We can introduce randomness, but still limited
* Typical programs interact with the user
= The user gives input (mouse, typing)
" Program does something different in response
 Recall: we do that with input(msg)
>>> input('Type something:)

Type something: abc Evaluates to
‘abc' what 1s typed

Numeric Input

>>> x = input('Number: *)

Number: &

>>> X

iz

>>> +]

TypeError: must be str, not int
>>> X = int(x)

>>> x+]
4

Convert it to the
type you want

