
Object-Oriented Design

Module 21

What Do We Mean by OO Design?

• Remember how we learned about functions?
§ First learned to call functions made for us
§ Then learned to define our functions
§ Finally learned to properly design functions

• We are following the same path for classes
§ First learned how to instantiate classes
§ Then learned to define our own classes
§ Now it is time to learn how to design classes

Object Oriented Design

Interface

• How the code fits together
§ interface btw programmers
§ interface btw parts of an app

• Given by specifications
§ Class spec and invariants
§ Method specs and preconds
§ Interface is ALL of these

Implementation

• What the code actually does
§ when create an object
§ when call a method

• Given by method definitions
§ Must meet specifications
§ Must not violate invariants
§ But otherwise flexible

Important concept for making
large software systems

Interface vs Implementation
class Time(object):

"""Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
self.hour = hour
self.min = min

def increment(self, hours, mins):
"""Move time hours, mins in future
Pre: hours int >= 0; mins in 0..59"""
self.hours += hours + (mins//60)
self.mins += mins % 60

Interface

Interface

Interface

Implementation

Implementation

• Type: set of values and the operations on them
§ int: (set: integers; ops: +, –, *, //, …)
§ Time (set: times of day; ops: time span, before/after, …)
§ Worker (set: all possible workers; ops: hire,pay,promote,…)
§ Rectangle (set: all axis-aligned rectangles in 2D;

ops: contains, intersect, …)

• To define a class, think of a real type you want to make
§ Python gives you the tools, but does not do it for you
§ Physically, any object can take on any value
§ Discipline is required to get what you want

Designing Types

Making a Class into a Type

1. Think about what values you want in the set
§ What are the attributes? What values can they have?

2. Think about what operations you want
§ This often influences the previous question

• To make (1) precise: write a class invariant
§ Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
§ Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

Planning out a Class
class Time(object):

"""Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move time hours and mins
into the future.
Pre: hours int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: True if noon or later."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

Planning out a Class
class Rectangle(object):

"""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: l (left edge) is a float
Inv: b (bottom edge) is a float
Inv: r (right edge) is a float
Additional Inv: l <= r and b <= t."""

def __init__(self, t, l, b, r):
"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <= r; b <= t"""

def area(self):
"""Return: area of the rectangle."""

def intersection(self, other):
"""Return: new Rectangle describing

intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

Planning out a Class
class Rectangle(object):

"""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: l (left edge) is a float
Inv: b (bottom edge) is a float
Inv: r (right edge) is a float
Additional Inv: l <= r and b <= t."""

def __init__(self, t, l, b, r):
"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <= r; b <= t"""

def area(self):
"""Return: area of the rectangle."""

def intersection(self, other):
"""Return: new Rectangle describing

intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

Special invariant relating
attributes to each other

Planning out a Class
class Hand(object):

"""Instances represent a hand in cards.

Inv: cards is a list of Card objects.
This list is sorted according to the
ordering defined by the Card class."""

def __init__(self, deck, n):
"""Draw a hand of n cards.
Pre: deck is a list of >= n cards"""

def isFullHouse(self):
"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

self.hour = hour
self.min = min

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = self.hour + hours

This is true to start
What we are supposed
to accomplish

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

?

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

self.min = self.min + mins
self.hour = (self.hour + hours +

self.min // 60)
self.min = self.min % 60
self.hour = self.hour % 24

What we are supposed
to accomplish

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

Recall: Enforce Preconditions with assert

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
assert 0 < n and n < 1000000, repr(n)+' is out of range'
Implement method here…

Check (part of)
the precondition

(Optional) Error message
when precondition violated

Enforce Method Preconditions with assert
class Time(object):

"""Class to represent times of day."""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int
assert type (min) == int
assert hour >= 0
assert 0 <= min and min < 60

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

Initializer creates/initializes all
of the instance attributes.
Asserts in initializer guarantee the
initial values satisfy the invariant.

Asserts in other methods enforce
the method preconditions.

Enforcing Invariants

class Time(object):
"""Class to repr times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59
"""

• These are just comments!
>>> t = Time(2,30)
>>> t.hour = 'Hello'

• How do we prevent this?

• Idea: Restrict direct access
§ Only access via methods
§ Use asserts to enforce them

• Example:
def getHour(self):

"""Returns: the hour"""
return self.hour

def setHour (self,value):
"""Sets hour to value"""
assert type(value) == int
assert value >= 0 and value < 24
self.numerator = value

Invariants:
Properties that

are always true.

Setters and Getters

Setter Method

• Used to change attribute
• Replaces all assignment

statements to the attribute
• Bad:

>>> t.hour = 5
• Good:

>>> t.setHour(5)

Getter Method

• Used to access attribute
• Replaces all usage of

attribute in an expression
• Bad:

>>> x = 3*t.hour
• Good:

>>> x = 3*t.getHour()

Setters and Getters

Setter Method

• Used to change attribute
• Replaces all assignment

statements to the attribute
• Bad:

>>> t.hour = 5
• Good:

>>> t.setHour(5)

Getter Method

• Used to access attribute
• Replaces all usage of

attribute in an expression
• Bad:

>>> x = 3*t.hour
• Good:

>>> x = 3*t.getHour()

Restricts
Intentional
Changes

Restricts
Accidental
Changes

The Problem with Getters/Setters

• Idea: Force the user to only use methods
§ Do not allow direct access of attributes

• But what is stopping direct access?
§ Attributes are still there! Methods
§ In fact, mentioned in class invariant

• We want data encapsulation
§ Make impossible (or nearly) for direct access
§ User only knows to access through methods

Hiding Methods From Access

• Hidden methods
§ start with an underscore
§ do not show up in help()
§ are meant to be internal

(e.g. helper methods)
• But they are not restricted

§ You can still access them
§ But this is bad practice!
§ Like a precond violation

• Can do same for attributes
§ Underscore makes it hidden
§ Only used inside of methods

class Time(object):
"""Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def _is_minute(self,m):
"""Return: True if m valid minute"""
return (type(m) == int and

m >= 0 and m < 60)

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert self._is_minute(m)
… Helper

Hiding Methods From Access

• Hidden methods
§ start with an underscore
§ do not show up in help()
§ are meant to be internal

(e.g. helper methods)
• But they are not restricted

§ You can still access them
§ But this is bad practice!
§ Like a precond violation

• Can do same for attributes
§ Underscore makes it hidden
§ Only used inside of methods

class Time(object):
"""Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def _is_minute(self,m):
"""Return: True if m valid minute"""
return (type(m) == int and

m >= 0 and m < 60)

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert self._is_minute(m)
… Helper

HIDDEN

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

def getHour (self):
"""Returns: hour attribute"""
return self._hour

def setHour(self, h):
""" Sets hour to h
Pre: h is an int in 0..23"""
assert type(h) == int
assert 0 <= h and h < 24
self._hour = d

Setter precondition is
same as the invariant

Getter

Setter

NO ATTRIBUTES
in class specification

Method specifications
describe the attributes

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

def getHour (self):
"""Returns: hour attribute"""
return self._hour

def setHour(self, h):
""" Sets hour to h
Pre: h is an int in 0..23"""
assert type(h) == int
assert 0 <= h and h < 24
self._hour = d

Setter precondition is
same as the invariant

Getter

Setter

NO ATTRIBUTES
in class specification

Method specifications
describe the attributes

Hidden attribute user
should NOT know about

Encapsulation and Specifications

class Time(object):
"""Class to represent times of day. """

Hidden attributes
Att _hour: hour of the day
Inv: _hour is an int in 0..23
Att _min: minute of the hour
Inv: _min is an int in 0..59

No attributes
in class spec

These comments
make it part of the
class invariant
but not part of the
(public) interface

These comments
do not go in help()

Encapsulation and Specifications

class Time(object):
"""Class to represent times of day. """

Hidden attributes
Att _hour: hour of the day
Inv: _hour is an int in 0..23
Att _min: minute of the hour
Inv: _min is an int in 0..59

No attributes
in class spec

These comments
make it part of the
class invariant
but not part of the
(public) interface

These comments
do not go in help()

New style since 2019!

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met

§ Example: turtle.color

• Has both getters and setters
§ Setters allow you to change

§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”

§ Example: turtle.x

• Has only a getter
§ No setter means no change

§ Getter allows limited access

May ask you to differentiate on the exam

Easy With Explicit Getters/Setters

class Person(object):
_name: string or None if unknown (MUTABLE)
_born: int > 1900; -1 if unknown (IMMUTABLE)

def getName(self):
return self._name

def setName(self):
assert value is None or type(value) == str
self._name = value

def getBorn(self):
return self._born Immutable

Mutable

But This Does Not Explain Everything

• Have seen many classes w/o getters/setters
§ RGB: Access color values directly
§ Turtle: Access positions directly

• How do they enforce invariants?
§ They do have getters/setters!
§ But they are just invisible (???)

• Will see how in another lesson.

