Module 21

Object-Oriented Design

What Do We Mean by OO Design?

e Remember how we learned about functions?
= First learned to call functions made for us
= Then learned to define our functions

* Finally learned to properly design functions

* We are following the same path for classes

= First learned how to instantiate classes
= Then learned to define our own classes

= Now it is time to learn how to design classes

Object Oriented Design

Interface Implementation

* How the code fits together * What the code actually does
" interface btw programmers = when create an object
" interface btw parts of an app = when call a method

e Given by specifications * Given by method definitions
= Class spec and invariants = Must meet specifications
= Method specs and preconds = Must not violate invariants
= Interface is ALL of these = But otherwise flexible

Important concept for making

large software systems

Interface vs Implementation

class Time(object):
"""(Class to represent times of day.

)

— Interface

Inv: hour is an int in 0..23
Inv: min is an int in 0..59""

def __init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

self.hour = hour
self.min = min

Interface
Implementation

def increment(self, hours, mins):
"""Move time hours, mins in future
Pre: hours int >= 0; mins in 0..59"™"
self.hours += hours + (mins//60)
self.mins += mins % 60

Interface
Implementation

e A

Designing Types

e Type: set of values and the operations on them
" Int: (set: integers; ops: +,—, *,//,...)
= Time (set: times of day; ops: time span, before/after, ...)
= Worker (set: all possible workers; ops: hire,pay ,promote,...)
= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)
e To define a class, think of a real type you want to make
= Python gives you the tools, but does not do it for you
= Physically, any object can take on any value

= Discipline 1s required to get what you want

Making a Class into a Type

1. Think about what values you want in the set
= What are the attributes? What values can they have?

2. Think about what operations you want
= This often influences the previous question
 To make (1) precise: write a class invariant
= Statement we promise to keep true after every method call
* To make (2) precise: write method specifications
= Statement of what method does/what it expects (preconditions)

* Write your code to make these statements true!

Planning out a Class

class Time(object):

"""Class to represent times of day. Class Invariant
Inv: hour is an int in 0..23 States what attributes are present
Inv: min is an int in 0..59™" and what values they can have.

. . A statement that will always be
def __init__(self, hour, min): true of any Time instance.

"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):

i ove time hours and mins } Method Specification

into the future. States what the method does.

Pre: hours int >= 0; mins in 0..59™ Gives preconditions stating what

is assumed true of the arguments.

def isPM(self):
""Returns: True if noon or later."""

Planning out a Class

class Rectangle(object):
"""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: 1 (left edge) is a float
Inv: b (bottom edge) is a float —
Inv: r (right edge) is a float

Additional Inv: 1 <=r and b <=t.""

def __init_ (self, t, 1, b, r):

"""The rectangle [l, r] x [t, b]
Pre: args are floats; l <=r; b <=t""

def area(self):
"""Return: area of the rectangle.""" }

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what
is assumed true of the arguments.

Planning out a Class

class Rectangle(object):
"""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: 1 (left edge) is a float
Inv: b (bottom edge) is a float —
Inv: r (right edge) is a float

Additional Inv: 1 <=r and b <=t.""

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

def __init_ (self, t, 1, b, r):
"""The rectangle [1, r] x [t, b
Pre: args are floats; 1 <=r;

Special invariant relating
attributes to each other

def area(self):
"""Return: area of the rectangle.""" }

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

Method Specification
States what the method does.

Gives preconditions stating what
is assumed true of the arguments.

Planning out a Class

class Hand(object):
"""Instances represent a hand in cards.

Inv: cards is a list of Card objects.
This list is sorted according to the
ordering defined by the Card class."""

def __init__ (self, deck, n):

"""Draw a hand of n cards.
Pre: deck is a list of >= n cards"™"

def isFullHouse(self):

"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
""Discard the k-th card."""

¥

¥

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what
is assumed true of the arguments.

Implementing a Class

e All that remains 1s to fill in the methods. (All?!)
* When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled

4. Ensure class invariant is true when done

* Later, when using the class:
* When calling methods, ensure preconditions are true

= [f attributes are altered, ensure class invariant 1s true

Implementing an Initializer

def __init__ (self, hour, min):
uuuThe tlme hOU.P:min_
Pre: hour in 0..23; min in 0..59"""

self.hour = hour
self. min = min

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

This 1s true to start

You put code here

This should be true
at the end

Implementing a Method

Inv: hour is an int in 0..23

Inv: min is an int in 0..59 This 1s true to start

What we are supposed
def increment(self, hours, mins): to accomolish
""Move this time <hours> hours / P
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59""" {— This is also true to start

self. min = self.min + mins ‘)

self.hour = self.hour + hours ® You put code here

——

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Method

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

What we are supposed
def increment(self, hours, mins): to accomolish
""Move this time <hours> hours / P
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59""" {— This is also true to start

self. min = self.min + mins
self.hour = (self hour + hours +

self.min // 60)
self.min = self.min % 60 You put code here
self.hour = self.hour % 24

——

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Class

e All that remains 1s to fill in the methods. (All?!)
* When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled

4. Ensure class invariant is true when done

* Later, when using the class:
* When calling methods, ensure preconditions are true

= [f attributes are altered, ensure class invariant 1s true

Recall: Enforce Preconditions with assert

def anglicize(n):

"""Returns: the anglicization of int n.
Precondition: n an int, 0 <n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
a,ssert[O <nandn< IOOOOOO] [repr(n)+' is out of ra,nge']
Implement od here...

r

Check (part of)
the precondition

(Optional) Error message
when precondition violated

Enforce Method Preconditions with assert

class Time(object):

""(lass to represent times of day.""" Inv: hour is an int in 0..83
Inv: min is an int in 0..59"""

def __init__ (self, hour, min):

unuThe tlme hour:min,
Pre: hour in 0..23; min in 0..59"™

assert type(hour) == int 7] | Initializer creates/initializes all
assert O <= hour and hour < 24 of the instance attributes.

assert type(min) == int Asserts 1n initializer guarantee the
assert 0 <= min and min < 60 J | initial values satisfy the invariant.

def increment(self, hours, mins):
"""Move this time <hours> hours

and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int

assert type (min) == int Asserts in other methods enforce
assert hour >= 0 the method preconditions.

assert O <= min and min < 60

—

Enforcing Invariants

class Time(object): e Jdea: Restrict direct access
"""(Class to repr times of day. = Only access via methods
Invihour is an int in 0..23 = Use asserts to enforce them
Inv:|min is an int in 0..69 Example:
def getHour(self):

""Returns: the hour"""
return self.hour

* These are just comments! def setHour (self,value):
>>> t = Tlme(z,SO) """SetS hOU.P to Value"""

>>> {.hour = 'Hello' assert type(value) == int

* How do we prevent this? assert value >= 0 and value < 24
self.numerator = value

Setters and Getters

Setter Method

Getter Method

Used to change attribute

Replaces all assignment
statements to the attribute

Bad:
>>>{ hour = 5

Good:
>>> {.setHour(5)

Used to access attribute

Replaces all usage of
attribute 1n an expression

Bad:
>>> x = 3*t.hour

Good:
>>> x = 3*t.getHour()

Setters and Getters

Setter Method Getter Method

Used to change attribute ¢ Used to access attribute

Replaces all assignment ¢ Replaces all usage of
statements to the attribute attribute 1n an expression

Restricts I Restricts

Intentional Accidental
Changes d Changes

The Problem with Getters/Setters

* Idea: Force the user to only use methods
= Do not allow direct access of attributes

* But what 1s stopping direct access’?
= Attributes are still there! Methods
= In fact, mentioned 1n class invariant

* We want data encapsulation

= Make impossible (or nearly) for direct access

= User only knows to access through methods

Hiding Methods From Access

e Hidden methods class Time(object):

= gtart with an underscore Class to represent times of day.

‘ donorshowupinhelpQ v bouk om0

= are meant to be internal

(e.g. helper methods) def _is_minute(self,m):

° But they are not restricted """Return: True if m valid minute""

return (type(m) == int and
m >= 0 and m < 60)

= You can still access them

= But this is bad practice!

= Like a precond violation . ,
. def __init__(self, hour, min):

e (Can do same for attributes ""The time hour:min.

Pre: hour in 0..23; min in 0..59"""

assert self._is_minute(m)
* Only used inside of methods
T Helper]

= Underscore makes it hidden

Hiding Methods From Access

e Hidden methods class Time(object):

= start with an underscore Class to represent times of day.

Inv: hour is an int in 0..23
HIDDEN [in is an int in 0..59""

* do not show up in help()

= are meant to be internal

(e.g. helper methods) def _is_minute(self,m):

° But they are not restricted """Return: True if m valid minute""

return (type(m) == int and
m >= 0 and m < 60)

= You can still access them

= But this is bad practice!

= Like a precond violation . ,
. def __init__(self, hour, min):

e (Can do same for attributes ""The time hour:min.

Pre: hour in 0..23; min in 0..59"""

assert self._is_minute(m)
* Only used inside of methods
T Helper]

= Underscore makes it hidden

Data Encapsulation

class Time(object): NO ATTRIBUTES
"""Class to repr times of day. """

in class specification

Getter |def getHour (self):

’ """Returns: hour attribute™"" .
return self. hour describe the attributes

Method specifications

Pre: his an int in 0..23™"

%} def setHour(self, h):
""" Sets hour to h } Setter precondition is

same as the invariant

assert type(h) == int
assert O <=hand h <24
self. hour =d

Data Encapsulation

class Time(object): NO ATTRIBUTES
"""Class to repr times of day. """

in class specification

Getter |def getHour (self):

I """Returns: hour attribute™"" .
return self. hour describe the attributes

Method specifications

Setter }
[WOREEMIE Hidden attribute user

R should NOT know about NGBS
Pre: h is g — g S the invariant

assert O <=hand h <24
self. hour =d

Encapsulation and Specifications

class Time(object):

"Class to represent times of day. """ No i‘“ﬂbu“’/s }
1N Cl1dSsSs spec

Hidden attributes - :
cSE comments
Att _hour: hour of the day make it part of the
Inv: hour is an int in 0..23 class invariant
Att _min: minute of the hour | but ot part of the
Inv: min is an int in 0..59 (public) interface

These comments
do not go 1n help()

Encapsulation and Specifications

class Time(object):

""(lass to represent times of day. ""| No *l‘ttrib“tes }
1N Cl1dSsSs speC

##+# Hidden attributes — :
COMmMments
AL D . style since 2019! [
Inv: _1 cwvariant
Att _min: minute of the houp | Put not part of the
Inv: minis an int in 0..59 | (public) interface

These comments
do not go 1n help()

Mutable vs. Immutable Attributes

Mutable Immutable
e (Can change value directly e Can’t change value directly
= If class invariant met = May change “behind scenes”
= Example: turtle.color = Example: turtle.x
e Has both getters and setters * Has only a getter
= Setters allow you to change = No setter means no change
* Enforce invariants w/ asserts = Getter allows limited access

May ask you to differentiate on the exam

Easy With Explicit Getters/Setters

class Person(object):
_name: string or None if unknown (MUTABLE)
Dborn: int > 1900; -1 if unknown (IMMUTABLE)

def getName(self):
’ return self. name

def setName(self): Mutable

assert value is None or type(value) == str
self. name = value

def getBorn(self):
’ return self._born ImmUtable

But This Does Not Explain Everything

 Have seen many classes w/o getters/setters
= RGB: Access color values directly

= Turtle: Access positions directly

 How do they enforce invariants?
= They do have getters/setters!
= But they are just invisible (?77)

e Will see how in another lesson.

