Module 20

Classes

Recall: Objects as Data in Folders

* An object 1s like a manila folder

e [t contains other variables

= Variables are called attributes

= Can change values of an attribute

e It has a “tab” that identifies it

= Unique number assigned by Python
= Fixed for lifetime of the object

10/29/19

(with assignment statements)

Classes

Unique tab
1dentifier
ig
X 2.0
y | 3.0
7 5.0

Recall: Classes are Types for Objects

e Values must have a type

* An object is a value

" A class is its type

10/29/19

id2

Point3

2.0

~

e (lasses are how we add
new types to Python

class name

3.0

5.0

Classes

Classes
e Point3
« RGB
e Turtle
e Window

Recall: Classes are Types for Objects

* Values must have atype ¢ Classes are how we add
= An object is a value new types to Python
" A class is its type

/

id2

In Python3, type and class
are now both synonyms

y 3.0

e Turtle
e Window

10/29/19 Classes

It is Time to Define Classes

e Remember how we learned about functions

= Learned to use (call) them first

= Then we learned how to define them

* Now going to do the same for classes

= [.earned how to use (instantiate) them first

= Wil

e First, |

' now learn how to define them

et’s look at the syntax

= Wil

10/29/19

| look at what it means later

Classes

The Class Definition

10/29/19

class <class-name>(object):
""Class specification"""
<function definitions>
<assignment statements>

<any other statements also allowed>

Goes inside a
module, just
like a function
definition.

class Example(object):
""The simplest possible class."
pass

_

J

Classes 6

The Class Definition

keyword class
Beginning of a
class definition

Specification
(similar to one
for a function)

Vl class <class-name>(object): — Do not forget the colon!

i‘> """Class specification"""

more on this later

<function definitions>

...but not often used

to define |7 .
TR <assignment statements>
-
5 ae e <any other statements also allowed>
attributes

10/29/19

class Example(object):
""The simplest possible class."
pass

Goes inside a
module, just
like a function

definition.
_

s

Classes

Classes Have Folders Too

Object Folders Class Folders

e Separate for each instance e Data common to all instances

id2
Point3
id3
X 2.0 Point3
Z 5 . 0 y 7 .2

z | -0.5
Created by class defintion

10/29/19 Classes 8

Recall: Constructors

* Function to create new 1nstances o BN id2
1

= Function name == class name Example

= Created for you automatically

e (Calling the constructor:

= Makes a new object folder ,
% Will come

= Initializes attributes back to this

= Returns the 1d of the folder

e By default, takes no arguments

= ¢ = Example()

10/29/19 Classes 9

Folder Observations

* By default, the folders are empty

= Nothing inside of the class folder

= Nothing inside each object folder either
* We have to write code to put stuff there
* Empty definition = empty folders
* Code must provide the features objects have

= Attributes, or variables inside of folder

= Methods, or functions inside of folder

10/29/19 Classes

10

Instances and Attributes

* Assignments add object attributes [id2
" <object>.<att> = <expression> id2
= Example: e.b = 42 Example
* Assignments can add class attributes b [1

= <class>.<att> = <expression>
= Example: Example.a =29

* Objects can access class attributes
= Example: print e.a
= But assigning it creates object attribute
= Example: e.a =10

e Rule: check object first, then class
10/29/19 Classes 11

Instances and Attributes

* Assignments add object attributes

e| id2
o = id2
= Example: e.b = 42 Not how Example
. J| Iy d
e Assignments can add ¢ TS v [

= Example: Example.a = 29

* Objects can access class attributes
= Example: print e.a
= But assigning it creates object attribute
= Example: e.a =10

e Rule: check object first, then class
10/29/19 Classes 12

Instances and Attributes

* Assignments add object attributes [id2
" <object>.<att> = <expression> id2
= Example: e.b = 42 Example
* Assignments can add class attributes b [1
= <class>.<att> = <expression>
= Example: Example.a = 29 a | 10

* Objects can access class attributes
= Example: print e.a
= But assigning it creates object attribute
= Exampleje.a =10

e Rule: check object first, then class
10/29/19 Classes 13

How it Fits in a Definition

class Example(object): el id2
mnmn id2
The simplest possible class. Example
A class attribute
a =239

Puts variable in

class folder, not
object folder

10/29/19 Classes 14

Invariants

e Properties of an attribute that must be true

* Works like a precondition:

= If invariant satisfied, object works properly

= If not satisfied, object 1s “corrupted”

 Examples:

= Point3 class: all attributes must be floats

= RGB class: all attributes must be ints in 0..255
* Purpose of the class specification

10/29/19 Classes

15

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute Iname; The worker last name
Invariant: Iname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"™""

10/29/19 Classes

16

The Class Specification

class Worker(object):
: . . . Short
""A class representing a worker in a certain orga,mza,t10n<[

summary |

~

detail

Instance has basic worker info, but no salary information. More

\

Attribute Iname: The worker last name 4 Description }

Invariant: Iname is a string ﬁ Invariant }

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"™""

10/29/19 Classes

17

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info. but no salarv information.

skl Old exams will be very different.

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"™""

10/29/19 Classes

Iy Yvarning: New format since 2019.

18

Recall: Objects can have Methods

* Object before the name 1s an implicit argument

 Example: distance
>>>p = Point4(0,0,0) # First point
>>>q = Pointd(1,0,0) # Second point
>>>p = Point4(0,0,1) # Third point

>>> p.distance(r) # Distance between p, r
1.0
>>> (.distance(r) # Distance between q, r

1.41421856:5730951

10/29/19 Classes

Method Definitions

e Looks like a function def 1. class Point3(object):
.. r """(Class for points in 3d space
* Indented inside class , p_ P
. . S Invariant: x is a float
" First param is always self 4 Invariant y is a float
= But otherwise the same B. Invariant z is a float """
e In a method call: 6 def distance(self,q):
: it """Returns dist from self to
* One less argument in () N . 4
o 8 Precondition: q a Point3"""
= Obj in front goes to self 9. assert type(q) == Point3
° Example: a.distance(b) 10. sqrdst = ((self.x-.x)**2 +
! &i 11. (self.y-q.y)**2 +
12. (self.z-q.2)**2)
13. return math.sqrt(sqrdst)

10/29/19 Classes 20

Methods Calls

 Example: a.distance(b)

a id2

id2

Point3

10/29/19

b

id3
id3
Point3
0.0
3.0
-1.0
Classes

class Point3(object):
"""Class for points in 3d space
Invariant: x is a float
Invariant y is a float
Invariant z is a float """
def distance(self,q):
"""Returns dist from self to q
Precondition: q a Point3"""
assert type(q) == Point3
sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
(self.z-q.2)**2)
return math.sqrt(sqrdst)

21

Methods Calls

 Example: a.distance(b)
a, id2 b id3
id2 id3
Point3 Point3
X 1.0 X 0.0
y 2.0 y 3.0
z 3.0 -1.0
Point3.distance 9
self id2
q id3
10/29/19 Classes

class Point3(object):
"""Class for points in 3d space
Invariant: x is a float
Invariant y is a float
Invariant z is a float """
def distance(self,q):
"""Returns dist from self to q
Precondition: q a Point3"""
assert type(q) == Point3
sqrdst = ((self.x-q.x)**2 +
(self.y-q.y)**R +
(self.z-q.2)**2)
return math.sqrt(sqrdst)

22

Methods and Folders

class Point3(object):
""Class for points in 3d space

* Function definitions...

= make a folder in heap Invariant: x is a float

m 1 I
assign name as variable Invariant y is a float

= variable in global space

Invariant z is a float """
def distance(self,q):

S o

e Methods are similar...

= Variable in class folder

= But otherwise the same

 Rule of this course

= Put header in class folder

= Nothing else!

10/29/19 Classes 23

Methods and Folders

Visualize | Execute Code @ Edit Code

class Point3(object):
"""Class for points in 3d space
Invariant: x is a float
Invariant y is a float
Invariant z is a float BB
def distance(self,q):
"""Returns: dist from self to g
Precondition: q a Point3"""
assert type(q) == Point3
sqrdst = ((self.x-gq.x)**2 +
(self.y-q.y)**2 +
(self.z-q.z)**2)
return math.sqrt(sqrdst)

<< First < Back = Program terminated

line that has just executed
== next line to execute

10/29/19 Classes

Heap primtives

Globals

global

Point3 | id1

Frames

Use arrows

Objects

id1:Point3 class
hide attributes

distance distance(self, q)

Just this

24

Initializing the Attributes of an Object (Folder)

e Creating a new Worker is a multi-step process:
= w = Worker() <

= w.lname = 'White'

* Want to use something like

= Jname to 'White', ssn to 1234, and boss to None
e Need a custom constructor

10/29/19

Instance is empty

w = Worker('‘White', 1234, None)

" Create a new Worker and assign attributes

Classes

25

Special Method: __init__

w = Worker('White', 12334, None)

def __init__ (self, n, s, b):
"""Tnitializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n
self.ssn = s
self.boss =D

10/29/19

Classes

[Called by the constructor]

id8
Worker
Iname | "White'
ssn 1234
boss| None
26

Special Method: __init__

two underscores

[W — VWULRGL\ VLl 2 192ZA NMAana)
\ don’t forget self —
def _ Jinit__(self, n, s, b):

"""Initializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n
self.ssn = s
self.boss =D

10/29/19

— use self to assign attributes

—.--58€8

[Called by the constructor]

id8

Iname
ssn

boss

Worker

'White'

1234

None

27

Evaluating a Constructor Expression

4.

Worker('White', 1234, None)

. Creates a new object (folder)

of the class Worker

= Instance is initially empty 1d3
Puts the folder into heap space

. Executes the method __init Iname
= Passes folder name to self o
= Passes other arguments in order -

= Executes the (assignment)
commands in initializer body

Returns the object (folder) name

10/29/19 Classes

Worker

"White'

1234

None

28

Aside: The Value None

e The boss field is a problem.

varl ids +— idS

= Dboss refers to a Worker object Point3
= Some workers have no boss x | 22
= Or maybe not assigned yet var2 | id6
(the buck stops there) y [o4
* Solution: use value None z | 6.7
= None: Lack of (folder) name
= Will reassign the field later! o .
e Be careful with None values var3 | None bomnts
= var3.x gives error! S
= There 1s no name in var3 y | -2.0
* Which Point3 to use? . | 00

10/29/19 Classes 29

Making Arguments Optional

class Point3(object):
"""Class for points in 3d space

* We can assign default values
to __init_ arguments

= Write as assignments to Invariant: X 1s a float

parameters in definition

1

3

5!

% Invariant y is a float
= Parameters with default 6. | Invariant zis a float

6

7

8

9

values are optional
def __init__ (self,x=0,y=0,z=0):

""Tnitializes a new Point3

e Examples:

= p = Point3() # (0,0,0)
p = Point3(1,2,3) # (1,2,3) 0. celf % = X
p = Point3(1,2) #1200 11 selfy =y
p = Pointd(y=3) #(0,3,0) 1o self.z = 7
p = Pointd(1,z=8) # (1,0,2) 13.

Precond: x,y,z are numbers""

10/29/19 Classes 30

Making Arguments Optional

class Point3(object):
"""Class for points in 3d space

* We can assign default values
to __init_ arguments

= Write as assignments to Invariant: X 1s a float

parameters in definition Invariant y is a float

= Parameters with default

values are optional

def __init__ (self,x=0,y=0,z=0):

1
P
3
4
D. Invariant z is a float "™
6
e Examples: ;

= p = Point30 200 M """Initializes a new Pointd
- D = Point3(Assigns in order 9. Precond: x,y,z are numbers"""
10, selfx =x
= p="Point3(1,2) [Use parameter name selfy = y
= p = Point3(v=3 when out of order '
p = Point3(y= XTI IZ. selfz =12
= p = Pointd(1,z=R) Can mix two
approaches

10/29/19 Classes 31

Making Arguments Optional

class Point3(object):
"""Class for points in 3d space

* We can assign default values
to __init_ arguments

= Write as assignments to Invariant: X 1s a float

parameters in definition Invariant y is a float

= Parameters with default

values are optional
def __init__ (self,x=0,y=0,z=

e Examples:

= p = Point3() # (0 0 0
p = Point3(Assigns in order

1
Q
3
4
5. Invariant z is a float "
6
7
8

9.
10.
p = Point3(1,2) | Use parameter name

. h t of ord
D = Point3(y=8 ¥ oo o
p= Point3(1,2=2)i Can mix two }

approaches
10/29/19 Classes 32

Recall: The __init_ Method

W — WULAGLI\ UUGLLG 1254, None)

\

[two underscores

[Called by the constructor]

de init__ (self, n, s, b):
"""Tnitializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n
self.ssn = s
self.boss =D

10/31/19 Using Classes Effectively

id8

Iname
ssn

boss

Worker

'White'

1234

None

33

Recall: The __init_ Method

two underscores

[W — WULAGLI\ UUGLLG 1254, None)

\

de

init__ (self, n, s, b):

""Tnitializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n

-

self.ssn = s
self.boss =D
10/31/19

Using Classes Effectively

-

Are there other
special methods
that we can use?

~

/

34

Example: Converting Values to Strings

str() Function repr () Function
e Usage: str() e Usage: repr()
= Evaluates the expression = Evaluates the expression
= Converts it into a string = Converts it into a string
 How does it convert? How does it convert?
= gtr(R) — 2 = prepr(R) — '
= str(True) — 'True’ = prepr(True) — 'True’
= str('True') — 'True' = prepr('True’) — "'True"

= gtr(Point3()) — '(0.0,0.0,0.0)' repr(Point3()) —

"<class "Pointé™> (0.0,0.0,0.0)"

10/31/19 Using Classes Effectively 35

Example: Converting Values to Strings

str() Function repr () Function
4 .)
» Usage: str() o repr() 1s for
= Evaluates the expression unambi gious
= Converts it into a strin .
. g 9 repre.sentatlorl\l y
e How does it con What type is How does 1t co ‘
. ste(2) o thi lue? . @) o The value’s
str(3) — 1S value’ repr(2) — type is clear
= str(True) — 'Tru = repr(True) —
= str('True') — 'True' = prepr('True’) — "'True"
= gtr(Point3()) — '(0.0,0.0,0.0)' = repr(Pointd()) —

"<class 'Point3™> (0.0,0.0,0.0)"

10/31/19 Using Classes Effectively 36

What Does str() Do On Objects?

* Does NOT display contents class Point3(object):

>>> p = Point3(1,2,3) """(Class for points in 3d space""

>>> str(p) def _ str_ (self):

<Pointd object at 0x1007a90> """Returns: string with contents"""
e Must add a special method return '('+str(self.x) + ', +

= _ str__ for str() str(self.y) + ' +

= _ repr__ for repr() str(self.z) + ")
* Could get away with just one def _ rvepr_ (self):

= repr() requires __repr__ """Returns: unambiguous string™"

= str() can use __repr__ return str(self.__class_)+

(if __str__ is not there) str(self)

10/31/19 Using Classes Effectively 37

What Does str() Do On Objects?

 Does NOT display contents
>>>p = Point3(1,3,3)
>>> str(p)

'<Pointd object at 0x1007a90>'

e Must add a special method
= gtr for str()
= repr__ for repr()

e Could get away with just one
= repr() requires __repr__

= gtr() can use __repr___
(if __str__ is not there)

10/31/19 Using Classes Effectively

class Point3(object):

"""(Class for points in 3d space""

def _ str (self):

"""Returns: string with contents"""

return '(‘+str(self.x) +',' +
ste(self.y) +',' +
str(self.z) +")'

Gives the
class name

def __repr__ (self):
"""Returns: unambi

return str(self. class)+
str(self)

repr__ using
__str___ as helper

