
Classes

Module 20

Recall: Objects as Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ Can change values of an attribute

(with assignment statements)
• It has a “tab” that identifies it

§ Unique number assigned by Python
§ Fixed for lifetime of the object

10/29/19 2

id2

x 2.0

y 3.0

z 5.0

Unique tab
identifier

Classes

Recall: Classes are Types for Objects

• Values must have a type
§ An object is a value
§ A class is its type

• Classes are how we add
new types to Python

10/29/19 3

id2

x 2.0

y 3.0

z 5.0

Point3

class name
Classes
• Point3
• RGB
• Turtle
• Window

Types

• int
• float
• bool
• str

Classes

Recall: Classes are Types for Objects

• Values must have a type
§ An object is a value
§ A class is its type

• Classes are how we add
new types to Python

10/29/19 4

id2

x 2.0

y 3.0

z 5.0

Point3

class name
Classes
• Point3
• RGB
• Turtle
• Window

Types

• int
• float
• bool
• str

Classes

In Python3, type and class
are now both synonyms

It is Time to Define Classes

• Remember how we learned about functions
§ Learned to use (call) them first
§ Then we learned how to define them

• Now going to do the same for classes
§ Learned how to use (instantiate) them first
§ Will now learn how to define them

• First, let’s look at the syntax
§ Will look at what it means later

10/29/19 Classes 5

The Class Definition

class <class-name>(object):

"""Class specification"""

<function definitions>

<assignment statements>

<any other statements also allowed>

Goes inside a
module, just

like a function
definition.

class Example(object):
"""The simplest possible class."""
pass

10/29/19 Classes 6

The Class Definition

class <class-name>(object):

"""Class specification"""

<function definitions>

<assignment statements>

<any other statements also allowed>

Goes inside a
module, just

like a function
definition.

keyword class
Beginning of a
class definition

more on this later
Specification
(similar to one
for a function)

Do not forget the colon!

to define
methods

…but not often used

to define
attributes

class Example(object):
"""The simplest possible class."""
pass

10/29/19 Classes 7

Classes Have Folders Too

Object Folders

• Separate for each instance

Class Folders

• Data common to all instances

10/29/19 Classes 8

id2

x 2.0

y 3.0

z 5.0

Point3
id3

x 5.0

y 7.2

z -0.5

Point3

Point3

????

Created by class defintion

Recall: Constructors

• Function to create new instances
§ Function name == class name

§ Created for you automatically

• Calling the constructor:
§ Makes a new object folder

§ Initializes attributes

§ Returns the id of the folder

• By default, takes no arguments
§ e = Example()

10/29/19 Classes

id2
id2e

Example

Example

Will come
back to this

9

Folder Observations

• By default, the folders are empty
§ Nothing inside of the class folder
§ Nothing inside each object folder either

• We have to write code to put stuff there
§ Empty definition = empty folders

• Code must provide the features objects have
§ Attributes, or variables inside of folder
§ Methods, or functions inside of folder

10/29/19 Classes 10

Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print e.a
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/29/19 Classes

id2
id2e

Example

Example

42b

29a

11

Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print e.a
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/29/19 Classes

id2
id2e

Example

Example

42b

29a

Not how
usually done

12

Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print e.a
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/29/19 Classes

id2
id2e

Example

Example

42b

29a

10a

13

How it Fits in a Definition

class Example(object):
"""
The simplest possible class.
"""

A class attribute
a = 29

10/29/19 Classes 14

id2
id2e

Example

Example

29a
Puts variable in
class folder, not

object folder

Invariants

• Properties of an attribute that must be true
• Works like a precondition:

§ If invariant satisfied, object works properly
§ If not satisfied, object is “corrupted”

• Examples:
§ Point3 class: all attributes must be floats
§ RGB class: all attributes must be ints in 0..255

• Purpose of the class specification
10/29/19 Classes 15

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""

10/29/19 Classes 16

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""

10/29/19 Classes 17

Description

Invariant

Short
summary

More
detail

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""

10/29/19 Classes 18

Warning: New format since 2019.
Old exams will be very different.

Recall: Objects can have Methods

• Object before the name is an implicit argument
• Example: distance

>>> p = Point3(0,0,0) # First point
>>> q = Point3(1,0,0) # Second point
>>> r = Point3(0,0,1) # Third point
>>> p.distance(r) # Distance between p, r
1.0
>>> q.distance(r) # Distance between q, r
1.4142135623730951

10/29/19 Classes 19

Method Definitions

• Looks like a function def
§ Indented inside class
§ First param is always self
§ But otherwise the same

• In a method call:
§ One less argument in ()
§ Obj in front goes to self

• Example: a.distance(b)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

10/29/19 Classes 20

self q

Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

10/29/19 21

id2
Point3

id3b

x 1.0

y

z

2.0

3.0

id3
Point3

x 0.0

y

z

3.0

-1.0

id2a

Classes

Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

10/29/19 22

id2
Point3

id3b

x 1.0

y

z

2.0

3.0

id3
Point3

x 0.0

y

z

3.0

-1.0

id2a

Point3.distance 9

id3q

id2self

Classes

Methods and Folders

• Function definitions…
§ make a folder in heap
§ assign name as variable
§ variable in global space

• Methods are similar...
§ Variable in class folder
§ But otherwise the same

• Rule of this course
§ Put header in class folder
§ Nothing else!

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):

….

10/29/19 Classes 23

distance(self,q)

Point3

Methods and Folders

10/29/19 Classes 24

Just this

Initializing the Attributes of an Object (Folder)

• Creating a new Worker is a multi-step process:
§ w = Worker()
§ w.lname = 'White'
§ …

• Want to use something like
w = Worker('White', 1234, None)

§ Create a new Worker and assign attributes
§ lname to 'White', ssn to 1234, and boss to None

• Need a custom constructor
10/29/19 25

Instance is empty

Classes

Special Method: __init__

def __init__(self, n, s, b):
"""Initializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """
self.lname = n
self.ssn = s
self.boss = b

10/29/19 Classes 26

w = Worker('White', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructor

Special Method: __init__

def __init__(self, n, s, b):
"""Initializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """
self.lname = n
self.ssn = s
self.boss = b

10/29/19 Classes 27

w = Worker('White', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructordon’t forget self
two underscores

use self to assign attributes

Evaluating a Constructor Expression

Worker('White', 1234, None)

1. Creates a new object (folder)
of the class Worker
§ Instance is initially empty

2. Puts the folder into heap space
3. Executes the method __init__

§ Passes folder name to self
§ Passes other arguments in order
§ Executes the (assignment)

commands in initializer body
4. Returns the object (folder) name

10/29/19 Classes 28

id8

lname 'White'

ssn

boss

1234

None

Worker

Aside: The Value None

• The boss field is a problem.
§ boss refers to a Worker object
§ Some workers have no boss
§ Or maybe not assigned yet

(the buck stops there)
• Solution: use value None

§ None: Lack of (folder) name
§ Will reassign the field later!

• Be careful with None values
§ var3.x gives error!
§ There is no name in var3
§ Which Point3 to use?

id5
Point3

id5var1

id6var2

Nonevar3

x 2.2

y

z

5.4

6.7

id6
Point3

x 3.5

y

z

-2.0

0.0
10/29/19 Classes 29

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

10/29/19 30Classes

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

10/29/19 31Classes

Assigns in order

Use parameter name
when out of order

Can mix two
approaches

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

10/29/19 32Classes

Assigns in order

Use parameter name
when out of order

Can mix two
approaches

Not limited to methods.

Can do with any function.

Recall: The __init__ Method

def __init__(self, n, s, b):
"""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """
self.lname = n
self.ssn = s
self.boss = b

10/31/19 Using Classes Effectively 33

w = Worker('Obama', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructor
two underscores

Recall: The __init__ Method

def __init__(self, n, s, b):
"""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """
self.lname = n
self.ssn = s
self.boss = b

10/31/19 Using Classes Effectively 34

w = Worker('Obama', 1234, None)
two underscores

Are there other
special methods
that we can use?

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

repr() Function

• Usage: repr(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ repr(2) → '2'
§ repr(True) → 'True'
§ repr('True') → "'True'"
§ repr(Point3()) →

"<class 'Point3'> (0.0,0.0,0.0)"
10/31/19 Using Classes Effectively 35

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

repr() Function

• Usage: repr(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ repr(2) → '2'
§ repr(True) → 'True'
§ repr('True') → "'True'"
§ repr(Point3()) →

"<class 'Point3'> (0.0,0.0,0.0)"
10/31/19 Using Classes Effectively 36

What type is
this value?

The value’s
type is clear

repr() is for
unambigious
representation

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there)

class Point3(object):
"""Class for points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+str(self.x) + ',' +

str(self.y) + ',' +
str(self.z) + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

10/31/19 37Using Classes Effectively

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there)

class Point3(object):
"""Class for points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+str(self.x) + ',' +

str(self.y) + ',' +
str(self.z) + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

10/31/19 38Using Classes Effectively

Gives the
class name

__repr__ using
__str__ as helper

