
Variables

Module 2

Motivation

• This series introduces the concept of variables
§ Very powerful programming concept
§ Necessary for more complex Python features

• But variables can be tricky to work with
§ With expressions, we got a value right away
§ A lot of variable features happen invisibly

• This can lead to lot of frustration
§ You think Python is doing one thing
§ It is actually doing something else

Visualization

• You need to learn to think like Python thinks
§ Otherwise you and Python will miscommunicate
§ Like a coworker with language/cultural issues
§ A good programmer sees from Python’s persp.

• Do this by building visual models of Python
§ You imagine what Python is doing invisibly
§ Not exactly accurate; more like metaphores
§ We call this skill visualization
§ It is a major theme of this course

Variables

• A variable
§ is a box (memory location)
§ with a name
§ and a value in the box

• Examples:

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

1.5x

Variables in Python

• These boxes represent a “memory location”
• Allows variables to be used in expressions

§ Evaluate to the value that is in the box
§ Example: 1 + x evaluates to 6

• Allows variables to change values
§ Example:
§ They can even change the type of their value
§ This is different than other languages (e.g. Java)

5x

5x 1.5x

Creating Variables

• So how do we make a variable in Python?
§ Cannot do just with expressions
§ Expressions give us a value
§ We want to command Python to make a box

• Variables are created by assignment statements

x = 5

• This is a statement, not an expression
§ Expression: Something Python turns into a value
§ Statement: Command for Python to do something

x
the value

the variable
5

Expressions vs Statments

But can now use x
as an expression

Value

NOTHING!

Naming Variables

• Python limits what names you can use
§ Names must only contain letters, numbers, _
§ They cannot start with a number
§ Also cannot be a reserved word (will see later)

• Examples
§ e1 is a valid name
§ 1e2 is not valid (it is a float)
§ a_b is a valid name
§ a+b is not valid (it is an + on two variables)

Variables Do Not Exist Until Made

• Example:
>>> y
Error!
>>> y = 3
>>> y
3

• Changes our model of Python
§ Before we just typed in one line at a time
§ Now program is a sequence of lines

Variables Do Not Exist Until Made

• Example:
>>> y
Error!
>>> y = 3
>>> y
3

• Changes our model of Python
§ Before we just typed in one line at a time
§ Now program is a sequence of lines

>>> x = 3
>>> y = 4
>>> x+y
7
>>> x = 2.5
>>> x+y
6.5

Assignments May Contain Expressions

• Example: x = 1 + 2
§ Left of equals must always be variable: 1 + 2 = x
§ Read assignment statements right-to-left!
§ Evaluate the expression on the right
§ Store the result in the variable on the left

• We can include variables in this expression
§ Example: x = y+2
§ Example: x = x+2

This is not circular!
Read right-to-left.

x 5

y 2

Assignments May Contain Expressions

• Example: x = 1 + 2
§ Left of equals must always be variable: 1 + 2 = x
§ Read assignment statements right-to-left!
§ Evaluate the expression on the right
§ Store the result in the variable on the left

• We can include variables in this expression
§ Example: x = y+2
§ Example: x = x+2

This is not circular!
Read right-to-left.

x 5

y 2

x 4

Assignments May Contain Expressions

• Example: x = 1 + 2
§ Left of equals must always be variable: 1 + 2 = x
§ Read assignment statements right-to-left!
§ Evaluate the expression on the right
§ Store the result in the variable on the left

• We can include variables in this expression
§ Example: x = y+2
§ Example: x = x+2

This is not circular!
Read right-to-left.

x 5

y 2

x 4 6x

About Crossing Off

• The crossing off is a helpful mental model
§ Emphasizes that the old value was deleted
§ But it shouldn’t stay there over time
§ Else might think a box remembers old values

• So what do we do?
§ Cross off at the time we execute the statement
§ But gone when we revisit the variable later

• Again, part of our visualization

Python is Dynamically Typed

• What does it mean to be dynamically typed?
§ Variables can hold values of any type
§ Variables can hold different types at different times

• The following is acceptable in Python:
>>> x = 1
>>> x = x / 2.0

• Alternative is a statically typed language
§ Each variable restricted to values of just one type
§ Examples: Java, C, C++

ç x contains an int value
ç x now contains a float value

Dynamic Typing

• Often want to track the type in a variable
§ Would typing x+y cause an error?
§ Depends on whether x, y are int, float, or str values

• Use expression type(<expression>) to get type
§ type(2) evaluates to <class 'int'>
§ type(x) evaluates to type of contents of x

• What is a class?
§ In Python it is a synonym for a type
§ In Python 2, the word type would be there

Going Meta

• The types are themselves values!
§ Can assign them to variables: x = int
§ Can use them in expressions: int == float

• What is their type? It is type.
§ type(int) evaluates to <class 'type’>

• Can use in a boolean expression to test type
§ type('abc') == str evaluates to True
§ type(x) == str evaluates to False

