Module 15

Sequences

Motivation for this Video Series

e Strings are a very, very useful type

* But they are also very limited

= Break everything into individual letters

= What if we want to work with numbers?

= Or if want to work with words, not letters?
* This 1s going to require a new type
= Let’s look at what features strings have

= See how to make them more general

Recall: String are Indexed

e s='gbcd'

o 1 2 3 4

a

b

C

d

e Access chars with []
0] 1s 'a'
4]1s 'd'
0:2] 1s 'ab' (no ¢)
R:]1s ‘e d'

“ S
“S
“ S
“S

e What are limitations?

* Slots: chars not words
= Kx: 'Hello World'
* Want word positions?
= Needs many steps

e Cannot do numbers
= Ex: '123, 456'
= Only access digits

Tuple: Sequence of Value

- x=(5,86,5,9, 15, 23)

0

1

2

3

4

5

5

6

5

9

15

23

e Access values with []
0]1s B

"X

"X

"X

"X

4] 1s 15
0:2] 15 (5,6)
8:] 15 (9,18,29)

Inside parens,
comma separated

e Can put anything in 1t
= (True, False)
= ("Hello', 'World")
e Can mix-and-match
= (True, 1)
= ("Hello', 3)

Two Tricky Things about Tuples

* What about an empty tuple?
* Empty String: "
= Empty Tuple: ()
* What about a one element tuple?
= [ncorrect: (4) <= Thisis 4
= Correct: (4,)

* But otherwise similar to strings

Tuples and the Python Tutor

. * Looks like an object
1 x=/1,3,5,7)
= Folder with 1d
e But not mutable

= Cannot change contents
= Like a string

Double click the tab to change name, press enter when done.

Visualize | Execute Code | Edit Code (Heap primitives Use arrows @ \

Globals Objects
x = (1,3,5,7)

global tuple

— >0 [t |2 |3
2 13|57

<< First <Back Program terminated

line that has just executed Frames

== next line to execute

Tuples and the Python Tutor

. * Looks like an object
N x =|(1,3,5,7)
= Folder with 1d

x|(5,6,7,-2) * But not mutable

= Cannot change contents

= Like a string

Double click the tab to change name, press enter when done.

Visualize | Execute Code | Edit Code (Heap primitives Use arrows @ \
Globals Objects
x = (1,3,5,7)
global tuple
./-—ﬁ\) 0 1 2 3
: ~ 13|57
ck Program terminated
line that has just executed Frames
== next line to execute

- J

Tuples Support String-like Operations

e Operation +: X; +X, * Operation in: X; in X,

" Glues 1f X, to end of X; = Tests if X; “a value 1n” X,

= Called concatenation = Not a subsequence

= Evaluates to a tuple = Evaluates to a boolean
 Examples: Examples:

" (1,8)+(3,4)1s (1,2,5,4) = 5in (5,6,9) 1s True

= (1,8) + (3, 1s (1,2,3) = 21in (5,6,9) 1s False

= (1,8)+(O1s(1,2) = (5,6) in (5,6,9) 1s False

Built-In Tuple Functions

* The len function
= Returns length (# of elements) of tuple
= Example: len((1,2,3)) 1s
e The tuple function
= Converts a value to a tuple
= Can only be applied to iterable types
= Right now: strings and tuples
= Example: tuple(‘abe’) 1s ('a’, 'b’, 'c’)

Tuples Have Methods (Like Strings)

 Example: count
= x.count(d) ==

X =($,9,%,5,9,9)

= x.count(9) ==
= x.count(l) ==
= x.count(b) ==

* Example: index Just like string methods
» x.index(3) == with the same name
" x.index(9) ==
= x.index(1) CRASHES
" x.index(5) ==

Tuples and Expressions

e Tuple parens () can * Execute the following:
contain expressions >>> g, =5
e (Called a tuple expression >>>p =17
= Python must evaluate it >>>x=(a, b, at+b)
= Evaluates each expression * What 1s x[2]?
= Puts the value 1n tuple
A: 'a+b’
* Example: B 12
>>> g = (142,3+4,5+6) C: 57
72> 8 D: ERROR
&, 7, 11) E: I don’t know

10/8/19 Lists & Sequences

Tuples and Expressions

e Tuple parens () can * Execute the following:
contain expressions >>>g9,=5
e (Called a tuple expression >>>h =17
= Python must evaluate it >>>x = (a, b, a+b)

= Evaluates each expression * What 1s x[2]?

= Puts the value 1n tuple

* Example: 4)
>>> g = (1+8,3+4,5+6) 1 2
>>> g, _ y
3,7,11)

10/8/19 Lists & Sequences

Lists are Almost the Same as Tuples

- x=[5,6,5,9, 15, 23]

0

1

2

3

4

5

5

6

5

9

15

23

e Access values with []
0]1s B

"X

=X

=X

=X

4] 1s 15
0:2] 15 (5,6)
8:] 15 (9,18,29)

Inside brackets,
comma separated

e Can put anything in 1t
= [True, False]
= ['Hello’, 8]

* Expressions eval first
>>> [1+2, 4*2]
[3, 8]

Lists are Almost the Same as Tuples

- x=[5,6,5,9, 15, 23]

0

1 2 3 4

5

5

65| 9]15

23

e Access values with []

= X[0]1s B
= x[4] 1s 15

= x[8:]

Inside brackets,
comma separated

e Can put anything in 1t
= [True, False]
= ['Hello’, 8]

* Expressions eval first

o\ A . AN

. X:O:Z[io (R A)

But singletons are easier: [3] }

Lists Operations are the Same

e Operation +: X; + X,

= [1,]]
= [1,8]

= [1,]]

+

+

+

8,4] 1s [1,8,3,4]
8] 18 [1,R,8]

15 [1,&]

 Functions same(ish)
= len([1,2,3]) 1s 3

= list("abc’) 1s ['a’, 'b', '¢']

e Operation 1n: X, in x,
= 51in [6,6,9] 1s True
= 21in [5,6,9] 1s False
= [5,6] in [6,6,9] 1s False
 Methods are same
= [1,2,1].count(1l) 1s 2
= [1,2,1].index(R) 1s 1

List [] Can Contain Expressions

e (Called a list expression (just as with a tuple)

= Python must evaluate it
= Evaluates each expression

= Puts the value in tuple

* Example:

>>> g, = [1+2,5+4,5+0]
>>> g, Aren’t these redundant?
[3, 7, 11]

10/8/19 Lists & Sequences

16

List, Tuples, Strings are Similar

* Strings, tuples, lists are all sequences

= A classification of a group of types

= Means a type that can be sliced
* They are also all iterables

= Means there 1s an order to the elements

= Can access elements one at a time in order
e But only lists are mutable

" You can reach into the folder and change

Representing Lists

Wrong Correct
X [5, 6, 7, -2] x| id1 Unique tab
/ identifier
Variable id1
holds id
Does not allow two i >
vars to reference o
: : 2 |4
_ same list object | Put list in . [
a “folder”

X = [Ba '?a 4a-2]

List Assignment

e Basic Syntax:
<var>[<index>] = <value>
= Reassign at index
= Affects folder contents

= Variable i1s unchanged
e Tuples cannot do this

"x=(5,74,-2)

= x[1]=8 ERROR

= Tuples are immutable

e X=[5, 7,4,-2]

0 1 2 3
5 | X | 4|-2
8
e X[1]=8
id1
0 |5
x | idl 1 X 8

2 | 4
3

When Do We Need to Draw a Folder?

e When the value contains other values

= This 1s essentially want we mean by ‘object’

* When the value 1s mutable

10/8/19

Type
int
float
str
Pointd
RGB
list

No
No
Yes*
Yes
Yes
Yes

Lists & Sequences

No
No
No
Yes
Yes
Yes

20

When Do We Need to Draw a Folder?

* When the value contains other values
= This 1s essentially want we mean by ‘object’

* When the value 1s mutable

| Type | Container? | Mutable?

tuples are a “grey area”

str Yes* No
Point3 Yes Yes
RGB Yes Yes

list Yes Yes

10/8/19 Lists & Sequences

List Variables are Object Variables

>>>x =[5,6,5,9] x| id2
>>>§ =X

>>> id(x) e
4422305480

>>> id(y) - list
4422305480 0 |5
>>>y[1] =8 L X8
.- : 5

[5,8,5,9]

However, List Slices Make Copies

x=[9, 6, 5, 9] y=x[1:3]
x | id2 y | id3
id5 id6
list list
0 |5 0 |6
1 |6 1 |5
2 |5
3 |9

[copy = new folder]

This is Why Lists are Advanced!

* You must pay close attention to the folder
= Sometimes have a copy, sometimes do not

= Do not always want to modity the original

= Reason degenerate slicing 1s useful: x[:]

 If in doubt use the Python Tutor

= Lists are a major reason it 1s so useful

e But need to learn to work without

Lists Share Methods with Tuple

x=[5,6,5,9, 15,23]

* index(value) s These are h
= Return position of the value immutable
= ERROR if value 1s not there methods
= x.index(9) evaluates to 3 _ /

* count(value)
= Returns number of times value appears 1n list
= x.count(db) evaluates to 2

List Methods Can Alter the List

[x=[5, 8, B, 9]]

e append(value)
= A procedure method, not a fruitful method

= Adds a new value to the end of list
= x.append(-1) changes the list to [5, 6, 5, 9, -1]

e insert(index, value)
= Put the value 1nto list at index; shift rest of list right

= x.insert(2,-1) changes the list to [5, 6, -1, 5, 9,]
e sort() | What do you think this does?

Where To Learn About List Methods?

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list. Equivalent to a[len(a):] = [x].

list.extend((iterable)

Extend the list by appending all the items from th In the documentatiOn !

list. insert(/, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, so a.insert (0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

list.remove(x)
Remove the first item from the list whose value is equal to x. It raises a VvalueError if there is no
such item.

1ist. pop([])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() re-
moves and returns the last item in the list. (The square brackets around the jin the method signa-
ture denote that the parameter is optional, not that you should type square brackets at that position.
You will see this notation frequently in the Python Library Reference.)

Recall: Mutable Functions

* A mutable function alters an object parameter
= Often a procedure; no return value

= Possible because folders persist outside frame

* Lists are mutable objects too!

" So we can make functions to alter them

" One of main reasons to use lists over tuples
e Often for matters of efficiency

= Changing a tuple requires a complete copy
= Expensive if the tuple 1s large

Lists and Functions: Swap

1. def swap(b, h, k):

_. """ Swaps b[h] and b[k] in b

3. Precond: b is a mutable list,

4, h, k are valid positions"""

D. temp= b[h]

6} b[h]= b[K]

7. b[k]= temp swap S

b id4 h| 3

C swap(x, 3, 4)) ki 4

10/8/19 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

B &1 20 — O
N| AN || =] WD

X id4

29

Lists and Functions: Swap

1. def swap(b, h, k):

_. """ Swaps b[h] and b[k] in b

3. Precond: b is a mutable list,

4, h, k are valid positions"""

D. temp= b[h]

6} b[h]= b[K]

7. b[k]= temp swap 6

b id4 h| 3

Cswap(x, 3, 4)) temp | 6 k| 4

10/8/19 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

B &1 20 — O
N| AN || =] WD

X id4

30

Lists and Functions: Swap

1. def swap(b, h, k):

_. """ Swaps b[h] and b[k] in b

3. Precond: b is a mutable list,

4, h, k are valid positions"""

D. temp= b[h]

6} b[h]= b[K]

7. b[k]= temp swap 7

b id4 h| 3

Cswap(x, 3, 4)) temp | 6 k| 4

10/8/19 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

5
4
7
X 5
5

B &1 20 — O

X id4

31

Lists and Functions: Swap

def swap(b, h, k):
" Swaps b[h] and b[k] in b
Precond: b is a mutable list,
h, k are valid positions""
temp= b[h]
b[h]= b[k]

N o O s R

b[k]= temp swap

b id4 h| 3

Cswa,p(x, 3, 4)) temp | © k| 4

10/8/19 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4
0 |5
1 |4
2 |7
3 | K 5
4 X 6

X id4

32

Slice Assignment

* List assignment not limited to one element
= Slicing accesses several elements at once

= Can use slicing to assign several at once

* This is a very advanced topic
= Will never need this 1n this course
= Just showing it for completeness

= Something that is very unique to Python

Slice Assignment

 Can embed a new list inside of a list
" Syntax: <var>[<start>:<end>] = <list>
= Replaces that range with content of list

 Example:

>>> g =[1,%,3]

>>> b = [4,5] Replaces [1,3]
>>> g[:2] =D with [4,5]
>>> 9,

[4, 5, 3]

Some Advanced Techniques

* Range and list size need not match

>>> g = [1,2,3]

>>> b = [4,5]

>>>g[:1]=D {Stretches list to fit}
>>> g,

[4, 5, 3, 3]

* Assigned value can be any iterable
>>> 9, =[1,R,d]

>>> g[:3] = 'hi’

>>> g,

[Ihl, Iil, 5]

{ Converts to list }

