
Error Handling

Module 14

Motivation

• Suppose we have this code:
result = input('Number: ') # get number from user
x = float(result) # convert string to float
print('The next number is '+str(x+1))

• What if user mistypes?
Number: 12a
Traceback (most recent call last):
File "prompt.py", line 13, in <module>

x = float(result)
ValueError: could not convert string to float: '12a'

Ideally Would Handle with Conditional

result = input('Number: ') # get number from user
if is_float(result):

x = float(input) # convert to float
print('The next number is '+str(x+1))

else:
print('That is not a number!')

Does not Exist

Using Try-Except

try:
result = input('Number: ') # get number
x = float(input) # convert to float
print('The next number is '+str(x+1))

except:
print('That is not a number!')

Similar to if-else
§ But always does the try block
§ Might not do all of the try block

Python Tutor Example

A Problematic Function

def is_number(s):
"""Returns: True if string s can be cast to a float

Examples: is_number('a') is False
is_number('12') is True
is_number('12.5') is True
is_number('1e-2') is True
is_number(‘0-1') is False

Precondition: s is a string"""

These examples
seem a bit

overwhelming

A Problematic Function

def is_number(s):
"""Returns: True if string s can be cast to a float

Precondition: s is a string"""
• Complications (It is a mess)

§ Everything must be digit, e, minus, or period
§ Period can only happen once
§ Minus can only happen after e
§ The e can only be second

An Observation

Taking Advantage of Errors

def is_float(s):
"""Returns: True if string s can be cast to a float

Precondition: s is a string"""
try:

x = float(s)
return True

except:
return False

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

A Design Philosophy Difference

• Conditionals are asking for permission
§ Check if a property holds
§ The body proceeds if it is safe

• Try-Except is asking for forgiveness
§ Assumes that a property always holds
§ Recovers if it does not

• Python often prefers the latter
§ But this is largely unique to Python
§ Only because errors are “relatively” cheap

A Design Philosophy Difference

• Conditionals are asking for permission
§ Check if a property holds
§ The body proceeds if it is safe

• Try-Except is asking for forgiveness
§ Assumes that a property always holds
§ Recovers if it does not

• Python often prefers the latter
§ But this is largely unique to Python
§ Only because errors are “relatively” cheap

But still use try-except sparingly.

Only when it simplifies code a lot.

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print function_1(1,0)
Where error occurred
(or where was found)

Script code.
Global space

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print(function_1(1,0))

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

Make sure you can see
line numbers in Atom.

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error

function_1

function_2

function_3
pops

pops
line in a try

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.’)
third(x)
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.’)
third(x)
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at first'
'Ending first'

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

Testing: Code Coverage

• Remember testing for if-elif-else
§ Needed a test for each possible branch
§ We called this code coverage

• Need a similar approach for try-except
§ Need a test for the try and the except
§ But harder to identify except; no guards
§ Have to identify all the ways can crash
§ Requires viewing code line by line

An Example

def eval_frac(s):
"""Returns: string s evaluated as a fraction (or None)
Precondition: s is a string"""
try:

pos = s.find('/')
top = int(s[:pos]) # Error?
bot = int(s[pos+1:]) # Error?
return top//bot # Error?

except:
return None See test script

