Module 14

Error Handling

Motivation

e Suppose we have this code:
result = input('Number: ") # get number from user

x = float(result) # convert string to float
print('The next number is '+str(x+1))

* What 1f user mistypes?
Number: 12a
Traceback (most recent call last):
File "prompt.py", line 13, in <module>

x = float(result)
ValueError: could not convert string to float: '12a/

Ideally Would Handle with Conditional

result = input('Number: ") # get number from user

if is float(result):
o () ﬁ Does not Exist]

x = float(input) # convert to float

print('The next number is '+str(x+1))
else:
print('That is not a number!")

Using Try-Except

try:
result = input('Number: ") # get number
x = float(input) # convert to float

print('The next number is '+str(x+1))
except:
- print('That is not a number!")

Similar to if-else
= But always does the try block
= Might not do all of the try block

Python Tutor Example

Visualize | Execute Code | @ Edit Code

try:
result = input('Number: ")

b x = float(result)

print('The next number is '+str(x+1l))
except:
print('That is not a number')

O

<<First <Back Step4of6 Forward> Last>>

ValueError: could not convert string to float: '12a’

line that has just executed
==) next line to execute

Globals
global
result |"12a"
Frames

A Problematic Function

def is_number(s):
"""Returns: True if string s can be cast to a float

Examples: is_number('a') is False e ~
is_number('12") is True These examples

is_number('12.5") is Tru seem a bi.t
is_number('1e-2") is Tru& overwhelming)

is_number(‘0O-1") is False

Precondition: s is a string"""

A Problematic Function

def is_number(s):
"""Returns: True if string s can be cast to a float

Precondition: s is a string"™

* Complications (It 1s a mess)

Everything must be digit, e, minus, or period
Period can only happen once
Minus can only happen after e

The e can only be second

An Observation

class £loat ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and
optionally embedded in whitespace. The optional sign may be '+' or '=';a '+' sign has no effect
on the value produced. The argument may also be a string representing a NaN (not-a-number), or a
positive or negative infinity. More precisely, the input must conform to the following grammar after
leading and trailing whitespace characters are removed:

sign s= "4t | =t

infinity := "Infinity" | "inf"

nan := "nan"

numeric_value ::= floatnumber | infinity | nan
numeric_string ::= [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in Floating point literals.
Case is not significant, so, for example, “inf”, “Inf’, “INFINITY” and “iNfINity” are all acceptable
spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the
same value (within Python’s floating point precision) is returned. If the argument is outside the range
of a Python float, an overflowError will be raised.

Taking Advantage of Errors

def is_float(s):
"""Returns: True if string s can be cast to a float

Precondition: s is a string"™ 4 . N
Conversion to a
try: /\ float might fail
x = float(s) r \
If attempt succeeds,
return True < | string sisafloat

except:

‘ return False <« Otherwise, it 1S not

A Design Philosophy Difference

* Conditionals are asking for permission
= Check 1f a property holds
= The body proceeds if it 1s safe
* Try-Except is asking for forgiveness
= Assumes that a property always holds
= Recovers if it does not
e Python often prefers the latter

= But this 1s largely unique to Python
* Only because errors are “relatively” cheap

A Design Philosophy Difference

* Conditionals are asking for permission
= Check 1f a property holds
= The body proceeds if it 1s safe

* Try-Except is asking

1s 1s largely unique to Python
= Only because errors are “relatively” cheap

Errors and the Call Stack

i S cote. Crashes produce the call stack:
d Global space Traceback (most recent call last):
| return function_g(X,y) j\\[File "error.py", line 20, in <module> J
print(function_1(1,0))
def function_2(x,y): File "error.py", line 8, in function_1
| return function_3(x,y) return function_2(x,y)
File "error.py", line 12, in function_2
def function_3(x,y): return function_3&(x,y)
| return x/y # crash here File "error.py", line 16, in function_Sl
— = return x/y

i Where error occurred

| (or where was found) Make sure you can see

line numbers in Atom.

Try-Except and the Call Stack

recover.py * Error “pops” frames off stack

. = Starts from the stack bottom
def function_1(x,y):

= Continues until 1t sees that

try:
return function_2(x.y) current line 1s 1n a try-block
except: = Jumps to except, and then
return float('inf") proceeds as if no error

def function_2(x.y): linematry| function_l

| return function_3(x.y) neton o pops
Uunctuion

def function_3(x,y): function 3 POpsS

I return x/y # crash here

Tracing Control Flow

def first(x):
print('Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.”)
third(x)
print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(2)?

Tracing Control Flow

def first(x):
print('Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.”)
third(x)
print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at first'
'Ending first'

Tracing Control Flow

def first(x):
print('Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second")

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(2)?

Tracing Control Flow

def first(x):
print(‘Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second")

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

Tracing Control Flow

def first(x):
print('Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second")

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(0)?

Tracing Control Flow

def first(x):
print(‘Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second")

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

Testing: Code Coverage

 Remember testing for if-elif-else
= Needed a test for each possible branch
" We called this code coverage

* Need a similar approach for try-except
= Need a test for the try and the except
= But harder to identify except; no guards
= Have to i1dentify all the ways can crash

= Requires viewing code line by line

An Example

def eval_frac(s):
"""Returns: string s evaluated as a fraction (or None)

Precondition: s is a string"""

try:
pos = s.find('/")
top = int(s[:pos]) # Error?
bot = int(s[pos+1:]) # Error?
return top//bot # Error?
except:

return None

[See test script]

