Module 13

Errors and Asserts

Motivation

* Specifications assign responsibility
* When code crashes, who 1s responsible?
* But this 1s not always immediately clear
= Have to read & interpret specification
= Must compare with what actually happened
* Need to understand error messages

= Error messages tell us what happened
= But there 1s a lot of “hidden” detail

Error Messages

Not An Error Message An Error Message
ZeroDivisionError: division by zero Traceback (most recent call last):
- File "error.py", line 41, in <module>
Everything starting print(function_1(1,0))
with the Traceback File "error.py", line 16, in function_1
_

return function_2(X,y)
File "error.py", line 26, in function_2
return function_3(x.,y)
File "error.py", line 36, in function_3
return x/y
ZeroDivisionError: division by zero

Recall: The Call Stack

e Functions are “stacked”

= Cannot remove one above
w/0 removing one below

" Sometimes draw bottom up
(better fits the metaphor)

= Top down because of Tutor

* Effects your memory
* Need RAM for entire stack

" An issue 1n adv. programs

Function 1

Function 2

Function 3

Function 4

Function 5

Errors and the Call Stack

error.py

def function_1(x,y):
I return function_2(x.,y)

def function_R(x,y): -
I return function_3(x.,y)

def function_3(x,y): —_
I return x/y # crash here

if name ==' main =
I print(function_1(1,0))

Crashes produce the call stack:

Traceback (most recent call last):
File "error.py", line 20, in <module>
print(function_1(1,0))
File "error.py", line 8, in function_1
return function_2(X,y)
~) File "error.py", line 12, in function_2
return function_3&(x,y)
~p File "error.py", line 16, in function_3
return x/y

Errors and the Call Stack

i S cote. Crashes produce the call stack:
d Global space Traceback (most recent call last):
| return function_g(X,y) j\\[File "error.py", line 20, in <module> J
print(function_1(1,0))
def function_2(x,y): File "error.py", line 8, in function_1
| return function_3(x,y) return function_2(x,y)
File "error.py", line 12, in function_2
def function_3(x,y): return function_3&(x,y)
| return x/y # crash here File "error.py", line 16, in function_Sl
— = return x/y

i Where error occurred
| (or where was found)

Recall: Assigning Responsibility

Developer 1

‘ r BROKEN ' \'

3y

‘ Defines
.

_

Whose fault 1s 1t?
Who must fix 1t?

s

Developer 2

“
\

Determining Responsbility

def function_1(x,y): Traceback (most recent call last):

"""Returns: result of function_ 2
/File "errorl.py", line Q n <module>

Precondition: X, y numbers print(function_1(1,0))

return function_2(X,y)

File "errorl.py", line 18, In function_1
def function_2(x,y): return function_2(x,y)

"""Returns: x divided by y
File "errorl.py", line 28, In function_2

Precondition: x, y numbers™" k return x/y /
return x/y

ZeroDivision

- 9
orint(fanction. 1(1.0)) Where i1s the error?]

Approaching the Error Message

Traceback (most recent call last):

e Start from the top

ook at function call File "errorl.py", line 32, in <module>
[print(function_1(1,0))

= Examine arguments

* (Print if you have to) File "errorl.py". line 18, in function_1
. . l return function_2(x.,y) l
= Verify preconditions
e Violation? Error found File "errorl.py", line 28, in function_2
return x/y

= Else go to next call

= Continue until bottom ZeroDivisionError: division by zero

Determining Responsbility

def function_1(x,y): Traceback (most recent call last):

"""Returns: result of function_ 2
File "errorl.py", line 32, in <module>

Precondition: X, y numbers print(function_1(1,0))

return function_2(x,y)
File "errorl.py", line 18, in function_1
def function_2(x,y): return function_2(x,y)

"""Returns: x divided by y
File "errorl.py", line 23, in function_2

Precondition: X, y numbers"™"
[return x/y
return x/y i{ Error! }

ZeroDivisionError: division by zero

print(function_1(1,0))

Determining Responsbility

def function_1(x,y): Traceback (most recent call last):
"""Returns: result of function_2

File "errorl.py", line 32, in <module>
print(function_1(1,0))

Precondition: X, y numbers"™"
return function_R(x,y)

in function 1

Error! }

def function_2(x,y): return function_2(x,y)

"""Returns: x divided by y

File "errorl.py", line 28, in function_2

tion: m S
Precondition X, ynu bS, y 0 return X/y

return x/y

ZeroDivisionError: division by zero
print(function_1(1,0))

Determining Responsbility

def function_1(x,y):
"""Returns: result of function_ 2

Precondition: x, y numbs, y > 0"
return function_R(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbs, y > 0"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "errorl.py", line 38, in <module>
[print(function_1(1,0))
Error!

File "errorl.py", line 18, in function_1
return function_2(x.,y)

File "errorl.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Aiding the Search Process

* We talked about assigning responsibility
= Have to step through the error message
= Compare to specification at each step

* How can we make this easier?

= What if we could control the error messages
" Write responsibility directly into error

* Then only need to look at error message

e We do this with assert statements

Assert Statements

e Form 1: assert <boolean>
= Does nothing if boolean 1s True

= Creates an error 1s boolean 1s False

e Form 2: assert <boolean>, <string>

* Very much like form 2

= But error message includes the message
e Statement to verify a fact is true

= Similar to assert_equals used 1n unit tests
= But more versatile with complete stack trace

Enforcing Preconditions

* Idea: Assert all of the preconditions
= [f preconditions violated, crash immediately

" Message immediately indicates the problem

* Error position 1s now immediately clear

= Error was the call to this function

= Occurs 1n line BEFORE 1n the stack trace

 Example: last_name_{first

Enforcing Preconditions

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
n has only space, separating first and last."""

assert type(n) == str, 'Precondition violation'
assert count_str(n,' ") == 1, 'Precondition violation'
Implement method here...

Another Advantage

* Undocumented behavior now impossible
= ALL violations guaranteed to crash

= Only valid calls execute normally

* Generally considered a good thing

* Undocumented behavior can metastasize

= Shuts 1t down before it can get any worse

 Example: to_centigrade(x)

Eliminating Undocumented Behavior

def to_centigrade(x):
"""Returns: x converted to centigrade

Parameter x: temp in fahrenheit

Precondition: x is a float""
assert type(n) == float, Precondition violation’

Implement method here...
Will do yourself in A4.

Recall: Enforcing Preconditions

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
n has only space, separating first and last."""

assert type(n) == str, 'Precondition viola,tion'\
assert count_str(n,' ") == 1) 'Precondition viola.tion')
Implement method here...

Can we do
better?

Making Better Error Messages

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
n has only space, separating first and last."""

assert type(n) == str, str(n)+' is not a string' A
assert count_str(n,' ') == 1|n+' has the wrong form'
Implement method here...

J

We know n
1S a string

The Problem With Error Messages

>>>msg = str(var)+' is invalid'
>>> print(mssg)
& is invalid

e Looking at this output, what 1s the type of var?
A:int
B: float

C: str
D: Impossible to tell

The Problem With Error Messages

>>>msg = str(var)+' is invalid'
>>> print(mssg)
& is invalid

e Looking at this output, what 1s the type of var?
A:int
B: float

C: str
D: Impossible to tell | CORRECT

The Problem With Error Messages

>>>vyar = &
>>>msg = str(var)+' is invalid'

>>> print(msg)

& is invalid

>>>vyar =2

>>>msg = str(var)+' is invalid’
>>> print(msg)

& is invalid

The Function repr

e Like str(), turns any value into a string
= Built-in function provided by Python
= Usetul for concatentating value to string

* But formatted to represent original type
= str('2') returns "2
" repr('2') returns ""2'" (includes quotes)

e Stands for “representation”

Error Messages with repr

>>>msg = str(var)+' is invalid'
>>> print(mssg)
& is invalid

>>>msg = repr(var)+' is invalid’

>>> print(msg) Clear that var
91 ia invalid 1s really a string

Enforcing Preconditions is Tricky!

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
4 " . o R

Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
_ There is no space in either the first or last name"" |

-

-

assert ?9?9% A\
This 18 an
N advanced
Assert use expressions only. L precondition y

Each one must fit on one line.

J

Asserts are Never Required

* Some preconditions are hard to express

* Sometimes it 1s t00 expensive
= Checking the precondition takes time
" Sometimes you want the code to run fast
* Why have asserts if confident no bugs
* In the end, only the specification matters

= Asserts were there as a convenience

= Used to help assign responsibility

How About a Compromise?

* Break precondition up into several parts
= Sometimes this 1s clear from the specification
* Assert the things that are easy to check

= This gives us some minimal enforcement

= Allows us to 1dentify the biggest errors

e Omit the things that are hard to check

= Will just let that behavior go unchecked

= Will catch it in the system some other way

Picking a Compromise

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
There is no space in either the first or last name"""

assert type(n) ==str # Check the type

assert ' 'inn # Least we can say of space
Do not try to enforce anything else

Enforcing Preconditions is Tricky!

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
4 " . o R

Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
_ There is no space in either the first or last name"" |

-

-

assert ?9?9% A\
This 18 an
N advanced
Assert use expressions only. L precondition y

Each one must fit on one line.

J

A Useful Function

def is_two_words(w):
"""Returns: True if w is & words sep by 1 or more spaces.

A word is a string with no spaces. So this means that

1. The first characters is not a space (or empty)

2. The last character is not a space (or empty)

3. There is at least one space in the middle

4., If there is more than one space, the spaces are adjacent
Precondition: w is a str"""

implement me

A Useful Function

def is_two_words(w):
"""Returns: True if w is & words sep by 1 or more spaces.

Precondition: w is a str"""
if not ' 'in w:

return False ! Find spaces]

first = w.find("' "); last = w.rfind("' ")

wO = w[:first]; w& = w[last+1:] :! Cut in 3 parts]

w1l = w[first:last+1]

condl = wl.count(' ') == len(wl) <[Check parts ok]

cond0 = wO = ”; cond2 = w2 I="

return condO and condl and cond?

Enforcing with The Second Function

def last_name first(n):

"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
There is no space in either the first or last name"""

assert type(n) == str

assert is two_words(n)

Rules for Using Helpers

* The function must return a Boolean
* True/False and no other options
* It CAN have its own preconditions
= But should be things checked so far
= Example: n 1s a string
e Often does not enforce own preconditions

* Only used by you (definer and caller)
* Would just be redundant

A Useful Function

def is_two_words(w):
"""Returns: True if w is & words sep by 1 or more spaces.

Precondition: w is a str"™"
ifnot '"in w: Precondition
return False not enforced

first = w.find("' "); last = w.rfind("' ")

wO = w[:first]; w@ = w[last+1:]
w1l = wifirst:last+1]

condl = wl.count(') == len(wl)
cond0 = wO = ”; cond2 = w2 I="

return condO and condl and cond?

