Module 12

Python Memory

The Problem of Methods

* Introduced objects 1n previous video seires
= “Folders” with variables and functions
= Called attributes and methods

* But we saw that strings also have methods

string.name(x.,y,...)

PN

argument method arguments
name

Are strings objects?

Surprise: All Values are in Objects!

* Including basic values
= int, float, bool, str

[Heap primtives @ Use arrows

Globals Objects
global id1:int
. 1000
id1
y id2 id2:int
1000
Frames

 Example:
>>>x = 1000
>>> {d(X)

This Explains A Lot of Things

e Primitives act like classes

= Conversion function is really a constructor

= Remember constructor, type have same name

* Example:
>>> type(l)
<class 'int'>
>>> int('1")
1

e Design goals of Python 3
= Wanted everything an object
= Makes processing cleaner

* But makes learning harder
= Objects are complex topic

= Want to delay if possible

But Not Helpful to Think This Way

e Number folders are immutable >>>x = 1000
= “Attributes” have no names >>>y = 1000

= No way to reach in folder >>> {d(X)
= No way to change contents 4497040368

X | 4497040368 >>> {d(y)
4497040368 4497040400

int Makes a brand >>> Y = Y"'].
1000 new int folder >>> ld(y)

4497040432

But Not Helpful to Think This Way

 Number folders are immutable

= “Attributes” have no names

= No way to reach in folder

= No way to change contents
 Remember purpose of folder

= Show how objects can be altered

= Show how variables “share” data

= This cannot happen in basic types
* So just ignore the folders

= (The are just metaphors anyway)

>>>x = 1000
>>>y = 1000
>>> id(X)
4497040568
>>> id(y)
4497040400
>>>y = y+1
>>> id(y)
4497040432

Why Show All This?

 Many of these are advanced topics
* Only advanced programmers need

= Will never need in the context of 1110
e But you might use them by accident
e Goal: Teach you to read error messages

* Need to understand what messages say

= Only way to debug your own code

The Three ‘“Areas” of Memory

<< First

< Back

Heap
Space

Global

Frames Objects
def max(x,y): S
15 X% ¥ pace Global frame function
return X max max(x, y)
return y o
b 2
a =1
o, 4 max
max(a,b)
X |1
Edit code

Call Stack ’

Step 5 of 8 | Forward

Global Space

e This 1s the area you “‘start with”

= First memory area you learned to visualize

= A place to store “global variables”

= Lasts until you quit Python D id2

 What are global variables?
" Any assignment not in a function definition
" Also modules & functions!

= Will see more on this in a bit

The Call Stack

e The area where call frames live

= (Call frames are created on a function call

= May be several frames (functions call functions)

= Each frame deleted as the call completes

* Area of volatile, temporary memory

= Less permanent than global space

iner x

* Think of as “scratch” space

q

id2

* Primary focus of Assignment 2

Heap Space or “The Heap”

 Where the ““folders” live
= Stores only folders

e Can only access indirectly 1d2
= Must have a variable with i1dentifier O
= Can be 1n global space, call stack X 0.0
 MUST have variable with id y 0.0
= If no variable has 1d, it 1s forgotten) T

= Disappears in Tutor immediately
= But not necessarily in practice

= Role of the garbage collector

Revisiting Modules

 Modules seem to behave a lot like objects
= They can have variables: math.pi
= Can even reassign these variables!
= Function calls look like methods: math.cos(1)

* So are they also objects?
= Said everything in Python is an object
* Yes (sort of)
= Look same in memory, but created differently

= Need to understand what happens on import

Modules and Global Space

e Importing a module:

= Creates a global variable

(same name as module)
= Puts contents in a folder
e Module variables
e Module functions

= Puts folder i1d in variable

e Can reassign module var

e Tutor won’t show contents

import math Global Space

math | id5

Heap Space

idS

module

pi | 3.141592
e |2.718281

Modules vs Objects

Module Object
math id2 p id3
id2 id3
module . [5.0 Point3
i [3.141592
Pt y | 2.0
e |2.718281
- N z | 3.0 L
@ math.pi D.X
math.cos(1) p.clamp(-1,1)
_) g

/

Modules vs Objects

Module Object
math id2 id3
id2
. nsS
The period () mei tor”
_ older
pi |3.1415y “gO nside of the f -
e |2.718281
@ math.pi D.X
math.cos(l) p.clamp(-1,1)

_

/

_

/

So Why Have Both?

* Question 1s a matter of program design

= Some software will use modules like objects
e Classes can have many instances

= Infinitely many objects for the Pointd class

= Reason we need a constructor function
* Each module 1s a unique instance

= Only one possibility for pi, cosine

= That 1s why we import them

= Sometimes refer to as singleton objects

So Why Have Both?

* Question 1s a matter of program design

= Some software will use modules like objects

e Classes can have many instances

* Infinitelv =2

= Only@®ETpossibility for pi, cosine
= That 1s why we import them

= Sometimes refer to as singleton objects

Are Functions Objects?

e “Everything an object” has major ramifications
= Forced us to completely rethink modules

= Anything else? What about functions?
e But functions live 1n the call stack!

= Function calls live 1n the call stack
= Remember there are two parts to a function
" Where does the function definition live?

= Python had to store the code somewhere

 If you are thinking objects, you are right

Functions and Global Space

A function definition... defto_centigrade(x): 4[Body]

= Creates a global variable | return 5*(x-32)/9.0
(same name as function)

Global Space
= Creates a folder for body P

to_centigrade | id6

= Puts folder i1d in variable

e Variable vs. Call Heap Space
>>> t,0_centigrade id6
<fun to_centigrade at 0x100498de8> function

>>> t,0_centigrade (32)
0.0

What Does Importing a Function Do?

Visualize | | Execute Code | | Edit Code

from math import cos
=+ 2 x = cos(l)

U

<< First <Back Step2of2 Forward > Last >>

line that has just executed
==p next line to execute

Heap primtives

Use arrows @

Globals Objects
global function
cos(...)
cos
Frames

Just like
defining it

How About import *?

from math import * Globals Objects

— X = cos(1l) global function
acos(...)

)

A acos
- acosh & function

<< First <Back Step2o0of2 Forward > Last >> acosh(...)

asin
asinh function
Star asin(...)
atan2 :
function
atanh asinh(...)
ceil
) function
copysign atan(...)
cos
sosh function
Ouch! e
. degrees
orf function
atanh(...)
erfc
exp function
AP ceil(...)
fabs function

)

convsign(...)

fantarial

Working with Function Variables

* So function definitions are objects

* Function names are just variables
" Variable refers to a folder storing the code
= [f you reassign the variable, it 1s lost
* You can also assign them to other variables

= Variable now refers to that function
= You can use that NEW variable to call it

= Just use variable 1n place of function name

Example: add_one

<< First

def

< Back

add_one(x):
|l|lll|lReturnS x+1|lllll
return x+1

add_one
y(2)

Step4of 5 Forward > Last >>

Globals

global
add_one

y

Frames

add_one

X 2

Frame remembers
the original name

Objects

function
add_one(x)

Application: Functions as Parameters

def doit(f,arg):
"""Returns the result of the call f(arg)

Param: f the function to call
Precond: f a function that takes one argument

Param arg: the function argument
Precond: arg satisfies the precondition of """

return f(arg)

Will see practical applications

of this 1n a later video series

Call Frames vs. Global Variables

The function does nothing: Global Space

1 | def swap(a,b):

2 """SW&p a & bllllll a 1 b 2
3| tmp=a Call Frame

411 a=Db

5/ b=tmp swap

>>>38 =1 a |1 b |2
>>>ph =2

>>> gwap(a,b)

Call Frames vs. Global Variables

The function does nothing: Global Space

1 | def swap(a,b):

2 ||||llswap a &‘, bllllll a 1 b 2
3 tmp=a Call Frame

411 a=b

5/ b=tmp swap

>>>38 =1 a |1 b |2
>>>h =2

>>> swap(a,b) tmp | 1

Call Frames vs. Global Variables

The function does nothing: Global Space

1 | def swap(a,b):

2 |||l|lswa'p a &‘, bllllll a 1 b 2
3 tmp=a Call Frame

411 a=b

5/ b=tmp swap

>>>3 =1 a X 2 b |2
>>>ph =2

>>> swap(a,b) |

Call Frames vs. Global Variables

The function does nothing: Global Space

1 | def swap(a,b):

2 """SW&p a &‘, bllllll a 1 b 2

3| tmp=a Call Frame

411 a=Db

5/ b=tmp swap

>>>38 =1 a %2 |b X1
>>>ph =2

>>> swap(a,b) |

Call Frames vs. Global Variables

The function does nothing: Global Space
1 | def swap(a,b):
2 """SW&p a & bllllll a 1 b 2
3| tmp=a Call Frame
4 a=D
RA
>>>g =] ME
>>>h =9

>>> gwap(a,b)

Functions Can Access Global Space

* Ways to use a global Global Space

= Have to use in expression

= CANNOT do assignment |get_a

* What happens 1t assign? RETURN | 4

= Makes a new local instead

» Even if you assign it later |8 8= %# globalvar

.)
So what use for globals* 11 def get_a():

= Typically use as constants | | wn_wm

= Example: math.pi 15 | return a # global

Functions Can Access Global Space

* Ways to use a global Global Space

= Have to use in expression

= CANNOT do assignment |mask_a

* What happens 1t assign? a135|] RETURN

= Makes a new local instead

18 def mask_aO:

Re | a=23.b
" Typlcally use as constants 25 return a H 100&1

= Example: math.pi

= Even if you assign it later

* So what use for globals?

The Global Keyword

* Possible to change global
= Have to mark 1t as such
= dlobal <variable>
= Should be at body start

e Use sparingly
= Using globals 1s confusing
= Easy to get lost
= Best for constants

Global Space

a|X 3.5

change_a

RETURN | 3.5

26 def change_a():

40
41
43

global a
a=32a.0
return a # local

Function Bodies Can Contain Other Calls

* We have seen this with print in greet

= Does print have a call frame?

" Yes, but cannot visualize (definition hidden)
* What happens when one calls another?

= Have to create a new call frame

= Old call frame freezes in place

= Waits until second frame 1s erased

* Then first frame continues again

One Function Calling Another

. def foo(x):

1 foo 2
& y=Xx+1

3 7 = bar(y) x| 2

4. | return z

5.

6. def bar(x):

(y=x1 4 Let’s visualize A
3 return y ourselves first.
0. (Tutor incomplete)
10.w = foo(R) N B

One Function Calling Another

. def foo(%):
y=Xx+1

foo

7 = bar(y)
return z N

. def bar(x): | ©xecute
y=Xx1
return y

1
R
4
4,
R Ready to
0
7
3
9
1

0.w = foo(R)

One Function Calling Another

. def foo(x):

L foo

& y =Xx+1

3. | z=Dbary) X[2 |y
4. | returnz

3} FROZEN

6. def bar(x): | 7 oar

7. y=x1 X|3

3 return y

9.

10.w = foo(R)

One Function Calling Another

. def foo(x):

L foo

& y =Xx+1

3. | z=Dbary) X[2 |y
4. | returnz

3} FROZEN

6. def bar(x): | 7 oar

7 y = x-1 X |3 y| 2
3 return y

Q.

10.w = foo(R)

One Function Calling Another

. def foo(x):

L foo

& y =Xx+1

3. | z=Dbary) X[2 |y
4, | returnz ,

3} FROZEN

6. def bar(x): | 7 oar

7 y = x-1 X |3 y| 2
3 return y RETURN | 2
Q.

10.w = foo(R)

One Function Calling Another

. def foo(x):

: foo 4
& y =Xx+1
3. | z=Dbary) X[2 |y
4, | returnz Z| 2
. UNFREEZE
6. def bar(x): |
7 y=x1
E
8. | returny Rasp Whoy
9. FRAMy,
10.w = foo(R)

One Function Calling Another

. def foo(x):

: foo

& y =Xx+1

3. | z=Dbary) X[2 |y
4, | return z Z| 2

0. RETURN | 2
6. def bar(x):

7 y=x1

3 return y

9.

10.w = foo(R)

Viewing in the Python Tutor

Visualize | Execute Code | Edit Code

Global
def foo(x): ovars
= y = x+1 Frames
z = bar(y)
return z foo
X 2
def bar(x):
y = x-1
return y
w = foo(2)

<<First = <Back Step4of10 Forward> Last>>

line that has just executed
==) next line to execute

Viewing in the Python Tutor

Visualize | Execute Code | Edit Code

Global
def foo(x): ovars
y = x+1 Frames
z = bar(y)
return z foo
X
def bar(x): y 3
— y = x-1
return y bar
x 3
w = foo(2)

0

<< First <Back Step6of10 Forward > Last >>

line that has just executed
==) next line to execute

Viewing in the Python Tutor

Visualize | Execute Code | Edit Code

def foo(x): 7 GIObalé
4 y = x+1 Frames
z = bar(y)
Cannot see e .
line number ; _ |2
ef bar(x): y |3
\. y = x-1
1 return y Bar
w = foo(2) % P
y 2
_1 Return
= value

<< First <Back Step8of10 Forward > Last >>

line that has just executed
==) next line to execute

The Call Stack

e Functions are “stacked”

= Cannot remove one above

Function 1

w/0 removing one below

Function 2

" Sometimes draw bottom up

(better fits the metaphor)

Function 3

= Top down because of Tutor

Function 4

* Effects your memory
* Need RAM for entire stack

Function 5

" An issue 1n adv. programs

The Call Stack

e Functions are “stacked”

= Cannot remove one above

Function 1

w/0 removing one below

Function 2

" Sometimes draw bottom up

(better fits the metaphor)

Function 3

= Top down because of Tutor

Function 4

* Effects your memory
* Need RAM for entire stack

" An issue 1n adv. programs

calls

calls

calls

The Call Stack

e Functions are “stacked”

= Cannot remove one above

Function 1

w/0 removing one below

Function 2

" Sometimes draw bottom up

(better fits the metaphor)

Function 3

= Top down because of Tutor

Function 4

* Effects your memory

= Need RAM for entire stack

Function 6

" An issue 1n adv. programs

Anglicize Example

<< First <Back Step 26 of 89

line that has just executed
= next line to execute

Forward >

Last >>

hundreds 56

suffix |""

anglicize20to99
n 56

tens

Frames Objects
def tens(n):]
"""Returns: tens-word for n Ciobal frame function
lici anglicize(n)

Parameter: the integer to anglicize RRgHC7e
Precondition: n in 2..9""" anglicize1000 function
if n == anglicize1to19 anglicizel000O(n)
Lif RECHEN. “EHenty anglicize20to99 function
eli n == g s anglicizeltolB(n)

return 'thirty" anglicize100to999
elif n == tens function

return 'forty' anglicize20to99(n)
elif n == anglicize fansiion
I_fl'etl-“'n fifty n 234756 anglicizel00t0999(n)
elif n ==

return 'sixty’ - Ghessa
elif n == anglicizel000 tens(n)

return 'seventy' n 756
elif n ==

rn 'eighty'’

Feturn. “elghty anglicizel00to999

return 'ninety’ n 756

Anglicize Example

def tens(n):

"""Returns: tens-word for n

Parameter: the integer to anglicize
Precondition: n in 2..9"""

if n ==

return 'twenty'
elif n ==

return 'thirty'
elif n ==

return 'forty'

elif n == 5:
return 'fifty'
elif n == 6:

return 'sixty’
elif n ==

return 'seventy'
elif n ==

return 'eighty’

return 'ninety’

<< First < Back

line that has just executed
== next line to execute

Step 26 of 89

Forward >

Last >>

Frames

Global frame

Global
Space

anglicize
anglicize1000

anglicize1to19

anglicize20to99 function
anglicize100t0999 anglicizeltold(n)
tens function

\ anglicize20to99(n)
Call Stack

anglicize

n 234756

anglicizel000
n 756

anglicizel®0to999
n 756
hundreds |56

suffix |""

anglicize20to99
n 56

tens

