
Algorithm Design

Module 10

Focus of this Video Series

• You know how to write a function definition
§ Have shown you the basic definition syntax
§ Have shown you what happens on a call

• But different that implementing a function
§ Given an English description of what to do
§ You have to write code that meets spec
§ This is the real skill that earns people money

• How to do that is focus of this series

Starting with the Specification

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in the form <first-name> <last-name>
with one blank between the two names
"""
Finish the body

Analogy: Math word problems

What Are Algorithms?

Algorithm

• Step-by-step instructions
§ Not specific to a language
§ Could be a cooking recipe

• Outline for a program

Implementation

• Program for an algorithm
§ In a specific language
§ What we often call coding

• The filled in outline

• Good programmers can separate the two
§ Work on the algorithm first
§ Implement in language second

• Why approach strings as search-cut-glue

Difficulties With Programming

Syntax Errors

• Python can’t understand you
• Examples:

§ Forgetting a colon
§ Not closing a parens

• Common with beginners
§ But can quickly train out

Conceptual Errors

• Does what you say, not mean
• Examples:

§ Forgot last char in slice
§ Used the wrong argument

• Happens to everyone
§ Large part of CS training

Proper algorithm design
reduces conceptual errors

Testing First Strategy

• Write the Tests First
Could be script or written by hand

• Take Small Steps
Do a little at a time; make use of placeholders

• Intersperse Programming and Testing
When you finish a step, test it immediately

• Separate Concerns
Do not move to a new step until current is done

Testing First Strategy

• Write the Tests First
Could be script or written by hand

• Take Small Steps
Do a little at a time; make use of placeholders

• Intersperse Programming and Testing
When you finish a step, test it immediately

• Separate Concerns
Do not move to a new step until current is done

Will see several strategies.

But all built on this core idea.

The Role of Stubs

• Strategy: fill in definition a little at a time
• We start with a function stub

§ Function that can be called but is unfinished
§ Allows us to test while still working (later)

• All stubs must have a function header
§ But the definition body might be “empty”
§ Certainly is when you get started

A Function Stub

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names
"""
Finish the body

“Empty”

But it Cannot Really Be Empty

def last_name_first(s):
Finish the body

• A function definition is only valid with a body
§ (Single-line) comments do not count as body
§ But doc-strings do count (part of help function)

• So you should always write in the specification

Error

An Alternative: Pass

def last_name_first(s):
pass

• You can make the body non-empty with pass
§ It is a command to “do nothing”
§ Only purpose is to ensure there is a body

• You would remove it once you got started

Fine!

Ideally: Use Both

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names
"""
pass

Now pass is a note that is unfinished.
Can leave it there until work is done.

Outlining Your Approach

• Recall the two types of errors you will have
§ Syntax Errors: Python can’t understand you
§ Conceptual Errors: Does what you say, not mean

• To remove conceptual errors, plan before code
§ Create outline of the steps to carry out
§ Write in this outline as comments

• This outline is called pseudocode
§ English statements of what to do
§ But corresponds to something simple in Python

Example: Reordering a String

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names"""
Find the space between the two names
Get the first name
Get the last name
Put them together with a comma

Example: Reordering a String

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names"""
end_first = s.find(' ')
Get the first name
Get the last name
Put them together with a comma

Example: Reordering a String

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names"""
end_first = s.find(' ')
first = s[:end_first]
Get the last name
Put them together with a comma

What is the Challenge?

• Pseudocode must correspond to Python
§ Preferably implementable in one line
§ Unhelpful: # Return the correct answer

• So what can we do?
§ Depends on the types involved
§ Different types have different operations
§ You should memorize important operations
§ Use these as building blocks

Case Study: Strings

• We can slice strings (s[a:b])
• We can glue together strings (+)
• We have a lot of features in introcs

§ We can search for characters
§ We can count the number of characters
§ We can pad strings
§ We can strip padding

• Sometimes, we can cast to a new type

Working With an Unfinished Function

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names"""
end_first = s.find(' ')
first = s[:end_first]
Get the last name
Put them together with a comma

How do we
test this code?

Early Testing

• Recall: Intersperse programming & testing
§ After each step we should test
§ But it is unfinished; answer is incorrect!

• Goal: ensure intermediate results expected
§ Take an input from your testing plan
§ Call the function on that input
§ Look at the results at each step
§ Make sure they are what you expect

• This requires the Python Tutor

Visualizing with the Python Tutor

Alternative: Print Statements

• Don’t always have the Python Tutor
§ Python Tutor is not full featured
§ Sometimes must test directly with Python

• Could use print statements to see
§ We did this when debugging
§ Principle is the same here
§ But remember to remove these
§ …or at least comment out

Alternative: Stubbed Returns

• Idea: We can always see a return value
§ Assume calling in the interactive shell
§ Return is the evaluation of the call

• Add a return statement to end of function
§ Return the variable we want to visualize
§ Different from the eventual return expression
§ Why we call it a stubbed return

Alternative: Stubbed Returns

def last_name_first(s):
"""
Returns: copy of s in form <last-name>, <first-name>

Precondition: s is in form <first-name> <last-name>
with one blank between the two names"""
end_first = s.find(' ')
first = s[:end_first]
Get the last name
Put them together with a comma
return first # Not the final answer

Rethinking the Backwards Approach

• The advantage of backwards approach?
§ You could be “lazy” in the design
§ If you were not sure, make it a variable
§ Define that variable in a previous line

• What if we could do it forwards?
§ Still have this lazy design approach
§ But now could do incremental testing
§ Seems best of both worlds

Working with Helpers

• Suppose you are unsure of a step
§ You maybe have an idea for pseudocode
§ But not sure if it easily converts to Python

• But you can clearly specify what you want
§ Specification means a new function!
§ Create a specification stub for that function
§ Put a call to it in the original function

• Now can lazily implement that function

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form
<last-name>, <first-name>
Precondition: s is in the form
<first-name> <last-name> with
with one blank between names"""
Find the first name
Find the last name
Put together with comma
return first # Stub

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form
<last-name>, <first-name>
Precondition: s is in the form
<first-name> <last-name> with
with one blank between names"""
first = first_name(s)
Find the last name
Put together with comma
return first # Stub

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
<first-name> <last-name> with
one blank between names"""
pass

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form
<last-name>, <first-name>
Precondition: s is in the form
<first-name> <last-name> with
with one blank between names"""
first = first_name(s)
Find the last name
Put together with comma
return first # Stub

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
<first-name> <last-name> with
one blank between names"""
end = s.find(' ‘)
return s[:end]

Concept of Top Down Design

• Function pecification is given to you
§ This cannot change at all
§ Otherwise, you break the team

• But you break it up into little problems
§ Each naturally its own function
§ YOU design the specification for each
§ Implement and test each one

• Complete before the main function

Testing and Top Down Design

def test_first_name():
"""Test procedure for first_name(n)"""
result = name.first_name('Walker White')
introcs.assert_equals('Walker', result)

def test_last_name_first():
"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

A Word of Warning

• Do not go overboard with this technique
§ Do not want a lot of one line functions
§ Can make code harder to read in extreme

• Do it if the code is too long
§ I personally have a one page rule
§ If more than that, turn part into a function

• Do it if you are repeating yourself a lot
§ If you see the same code over and over
§ Replace that code with a single function call

Exercise: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
pass # ???

• We first step through some examples
§ Like coming up with the test cases
§ But we also look for patterns in the answers

• From these patterns, we break into cases
§ And we combine with top-down design

Stepping Through Examples

• Examples:
§ 3 => "three"
§ 53 => "fifty three"
§ 253 => "two hundred fifty three"
§ 3253 => "three thousand two hundred fifty three"
§ 253253 => "two hundred fifty three thousand

two hundred fifty three"
• Already see a pattern

§ Rules for each group of three numbers are same

Approaching with Top Down Design

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
if n < 1000: # no thousands place

return anglicize1000(n)
elif n % 1000 == 0: # no hundreds, only thousands

return anglicize1000(n/1000) + ' thousand'
else: # mix the two

return (anglicize1000(n/1000) + ' thousand '+
anglicize1000(n))

Now implement this.
See anglicize.py

Moving on to the Next Function

def anglicize1000(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000"""
pass # ???

• Notice it is essentially same problem as before
§ ONLY thing changed is the precondition
§ So it limits the number of cases to look at

• But we want to break it up further
§ Want to handles 1, 2, and 3 digit separately

More Top Down Design

def anglicize1000(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000"""
Determine number of "digits"
if n < 20:

return anglicize1to19(n)
elif n < 100:

return anglicize20to99(n)
else:

return anglicize100to999(n)

Must Brute Force

Needs a tens helper

Now straightforward

See Module bugs.py

def valid_date(date):
"""Returns: True if date is an actual date

Example: valid_date('2/29/2004') is True
but valid_date('2/29/2003') is False

Precond: date is a string month/day/year where
month, day are 1 or 2 digit each and year is 4"""
Split up string

Bug Number 1

>>> valid_date(‘3/30/2004')
First / at 1
Second / at 4
Month is 3
Day is 30
Year is 3
Leap year
Month is February
Month 3

has 29 days
Day out of range
False

• Note: Weird trace
§ Month is February
§ Tells us what is wrong

• Change line 98
elif (month == 2 and

leap_year(year)):
print('Month is February')

Bug Number 2

>>> valid_date('2/2/2000')
First / at 1
Second / at -1
Month is 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "bugs.py", line 33, in valid_date
day = int(date[pos1+1:pos2])

ValueError: invalid literal for int()
with base 10: '2/200'

• Note: Search failed
§ Could not find /
§ Tells us what is wrong

• Change line 32
pos2 =
date.find('/',pos1+1)

