Nested Lists

10/17/21

e Lists can hold any objects
* Lists are objects
* Therefore lists can hold other lists!

a=1[2 1] @
b=[5, 1] @;ﬁ
¢=1[1,4,b] x=11,[%, 1], 11, 4, [3, 111, 81

x=1[1,3a,c, 5] (1] [=210] x2I[2I[1]

EX

How Multidimensional Lists are Stored

*b=1[[9,6,4],(5 7,7l

964 y il 7 id2 p id3
5717 A— /
/ a2 - 2 Pk
e A 6 s’ 7
/ T y
b [idl e - 4 i 7

¢ b holds name of a one-dimensional list
= Has len(b) elements
= Its elements are (the names of) 1D lists

* bl[i] holds the name of a one-dimensional list (of ints)
= Has len(b[i]) elements

Representing Tables as Lists

Spreadsheet * Represent as 2d list
= Each table row a list
o1z = List of all rows
015 4 7 Each row,
col has a = Row major order
1489 value . .
2051 2 e Column major exists
3041 = Less common to see
416780 = Limited to some

scientific applications
d= [[5,4,7,3],(4,8,9,7],(8,1,2,8]4,1,8,91[6,7,8,01]

Overview of Two-Dimensional Lists

e Access value at row 3, col 2:

01 2
d[3iel d 05473
I l48097
* Assign value at row 3, col 2:
205123
d[3][R1 =8 41209
416 780

* An odd symmetry

= Number of rows of d: len(d)

= Number of cols in row r of d: len(d[r])

Slices and Multidimensional Lists

* Only “top-level” list is copied.

e Contents of the list are not altered X =Db[:]
* b=1[9, 6],[4, 5], (7, 71l x
M
b . .
L s
CE I G S 5 id3 =
[EN
S
=
=

Functions on Nested Lists

def all_nums(table):
"""Returns True if table contains only numbers

Precondition: table is a (non-ragged) &d List""
result = True
Walk through table

for row in table:

Walk through the row
for item in row: Second LOOp

if not type(item) in [int,float]:
‘ result = False

return result

Transpose: A Trickier Example

def transpose(table):
"""Returns: copy of table with rows and columns swapped 1 2
Precondition: table is a (non-ragged) &d List"""
numrows = len(table) # Need number of rows 3
numcols = len(table[0]) # All rows have same no. cols 5 6

result =[] Accumulator) accumulator
for m in range(num4 for each 100p @
row =[] —o—rAccumulator

for n in range(numrows): 1 3 5
‘ row.append(table[n][m]) # Create a new row list
result.append(row) # Add result to table 246

return result

Basic Syntax

e Create with format: {kl:vl, k2:v®, ...}

= Both keys and values must exist

= Ex: d={‘jrs1"'John',’jrs2"'John', wmwR':'Walker'}
e Keys must be non-mutable

= ints, floats, bools, strings, tuples

= Not lists or custom objects

= Changing a key’s contents hurts lookup

e Values can be anything

Dictionaries Can be Modified

Key-Value Pairs

* The last built-in type: dictionary (or dict)
= One of the most important in all of Python
= Like a list, but built of key-value pairs

e Keys: Unique identifiers
= Think social security number
= At Cornell we have netids: jrs1

* Values: Non-unique Python values

= John Smith (class *13) is jrs1 Idea: Lookup
values by keys

= John Smith (class "16) is jrs2

e Can reassign values
d = {Yjrs1"'John',jrsR"'John',
'wmw': Walker'}

e Can add new keys id8 ‘
= d[‘aaal'] = 'Allen’
= Do not think of order Jral

wika

‘aaal'

= d['jrs1'] = 'Jane’
= Very similar to lists

* Can delete keys

= del d['wmwR’]
= Deletes both key, value

8
Using Dictionaries (Type dict)
e Access elts. like a list d = {'js1"'John','jsR":'John’,
= d['jrs1'] evals to 'John’ 'wmwe':"Walker'}
= d['jrs?'] does too . a m
i
= d['wmw?' evals to Walker' ! :
= d['abcl'] is an error
e Can test if a key exists i
e s
= 'jrs]’ in d evals to True
= 'abel' in d evals to False e =
* But cannot slice ranges! Key-Value order in
folder is not important
10
Dictionary Loop with Accumulator
def max_grade(grades):

""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values™"
maximum = 0 # Accumulator
Loop over keys
for k in grades:
if grades[k] > maximum:
‘ maximum = grades[k]

refurn maximum

11

12

