A Mathematical Example: Factorial

e Non-recursive definition:
nl=n Xn-1X ... X2 X1
=nm-1 X ... X2 X1)

e Recursive definition:
n!=nm-1)! forn=0 Recursive case
O!'=1 Base case

What happens if there 1s no base case?

Factorial as a Recursive Function

def factorial(n): en!=n(n-1)!
""Returns: factorial of n.
e Ol =1

Pre: n >0 an int"""

if n==0:
~ return 1 Base case(s)

return n*factorial(n-1) | Recursive case

What happens if there 1s no base case?

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8, 13, ...
dg dy dr A3 Ay d5 dg
= Get the next number by adding previous two
* What 1s ag?

e Recursive definition:

"a,=a,,+a,, Recursive Case
"aqy=1 Base Case
"a, =1 (another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacei(n): * Function that calls itself
"""Returns: Fibonacci no. 4, = Each call is new frame
Precondition: n = 0 an int""" = Frames require memory
ifn<=1: = o calls = c© memory
| return 1
fibonacci 3
return (fibonacei(n-1)+ n| S
fibonacei(n-R)) /\
fibonacci 1 fibonacci 1

n 4 n 3

Fibonacci: # of Frames vs. # of Calls

* Fibonacci 1s very inetficient.
* fib(n) has a stack that i1s always <n

= But fib(n) makes a lot of redundant calls

fib(5)
Path to end = / \
the call stack fib(4) fib(3)
fib(3) fib(2) fib(2) | |fib(1)
fib(2) | |fib(1) fib(1) | | fib(0)| | fib(1) | |fib(0)

>
fib(1) fib(0)

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P
\ J
Y

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

Three Steps for Divide and Conquer

1. Decide what to do on “small” data

= Some data cannot be broken up

= Have to compute this answer directly

2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers

= Assume the smaller answers are correct

= Combining them should give bigger answer

Divide and Conquer Example

def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data

if g==":

" return O
elif len(s) == 1:

 return 1 if s[0] == "e' else O

2. Break into two parts S

“Short-cut” for

if s[0] == "¢’
return 1

else:
return O

0] s[1:]

left = num_es(s[0])
right = num_es(s[1:])

plle|n|n

3. Combine the result
return left+right

0O + 2

Exercise: Remove Blanks from a String

def deblank(s):

"""Returns: s w/o0 blanks™"
if g==")

. return s
. >[Handle small data }
elif len(s) == 1:

- return "if s[0]==""elses

left = deblank(s[0]) [Break up the dat }
right = deblank(s[1:]) B

return left+right }[Combine answers }

Minor Optimization

def deblank(s):

""Returns: s w/o blanks"""
if g=="

. return s

left = s[0] d Eliminate the A

if s[0]=="" second base
left =" Ini

| g by combining y

right = deblank(s[1:])
, Less recursive calls}
return left+right

Following the Recursion

deblank a b C

Xdeblank a b C

a deblank b C

Z deblank | b C

b deblank C

x deblank | c

222222

