
For-Loops

Lecture 13

Announcements for This Lecture

(Optional) Videos

• Videos 16.1-16.7 for today
• Videos 17.1-17.5 next time

Assignments/Lab

• A3 is due Today
§ Survey is now posted
§ Will be graded before exam

• A4 after exam and break
§ Longer time to do this one
§ Covers this lecture and next

• No lab Th/Fri
§ Labs this week will be due

after break

10/4/22 For Loops 2

• Prelim, 10/6 at 7:30 pm
§ Material up to 9/29
§ Study guide is posted
§ Rooms by last name

• Review Thursday
§ In Class

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
pass # Stub to be implemented

10/4/22 For Loops 3

Remember our approach:
Outline first; then implement

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
Create a variable to hold result (start at 0)
Add each list element to variable
Return the variable

10/4/22 For Loops 4

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
result = 0
result = result + thelist[0]
result = result + thelist[1]
…
return result

10/4/22 For Loops 5

There is a
problem here

Working with Sequences

• Sequences are potentially unbounded
§ Number of elements inside them is not fixed
§ Functions must handle sequences of different lengths
§ Example: sum([1,2,3]) vs. sum([4,5,6,7,8,9,10])

• Cannot process with fixed number of lines
§ Each line of code can handle at most one element
§ What if # of elements > # of lines of code?

• We need a new control structure
10/4/22 For Loops 6

The For-Loop

Create local var x
x = seqn[0]
print(x)
x = seqn[1]
print(x)
…
x = seqn[len(seqn)-1]
print(x)

Write as a for-loop
for x in seqn:

print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

Key ConceptsNot valid
Python

10/4/22 For Loops 7

Executing a For-Loop

The for-loop:

for x in seqn:
print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

seqn has
more elts

put next
elt in x

True

False
print(x)

Usually
a sequence

10/4/22 For Loops 8

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
Create a variable to hold result (start at 0)
Add each list element to variable
Return the variable

10/4/22 For Loops 9

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
result = 0

for x in thelist:
result = result + x

return result
10/4/22 For Loops 10

• iterable: thelist
• loop variable: x
• body: result=result+x

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
result = 0

for x in thelist:
result = result + x

return result
10/4/22 For Loops 11

• iterable: thelist
• loop variable: x
• body: result=result+x

Accumulator
variable

The Accumulator

• In a slides saw the accumulator
§ Variable to hold a final (numeric) answer
§ For-loop added to variable at each step

• This is a common design pattern
§ Popular way to compute statistics
§ Counting, averaging, etc.

• It is not just limited to numbers
§ Works on every type that can be added
§ This means strings, lists and tuples!

10/4/22 For Loops 12

Example: String-Based Accumulator

def despace(s):
"""Returns: s but with its spaces removed
Precondition: s is a string"""
Create an empty string accumulator
For each character x of s

Check if x is a space
Add it to accumulator if not

10/4/22 For Loops 13

Example: String-Based Accumulator

def despace(s):
"""Returns: s but with its spaces removed
Precondition: s is a string"""
result = ''
for x in s:

if x != ' ':
result = result+x

return result
Body

10/4/22 For Loops 14

Modifying the Contents of a List

def add_one(thelist):
"""(Procedure) Adds 1 to every element in the list
Precondition: thelist is a list of all numbers
(either floats or ints)"""
for x in thelist:

x = x+1
procedure; no return

10/4/22 For Loops 15

DOES NOT WORK!

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 16

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 17

0
1
2

id4

5
4
7

seq id4

add_one

thelist

5

id4

x 5

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 18

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

x 6

Increments x in frame
Does not affect folder

Loop back
to line 4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 19

0
1
2

id4

5
4
7

seq id4

add_one

thelist

5

id4

x 4

Next element stored in x.
Previous calculation lost.

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 20

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

x 5

Loop back
to line 4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 21

0
1
2

id4

5
4
7

seq id4

add_one

thelist

5

id4

x 7

Next element stored in x.
Previous calculation lost.

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 22

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

x 8

Loop back
to line 4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 23

0
1
2

id4

5
4
7

seq id4

add_one

thelist id4

x 8

Loop is completed.
Nothing new put in x.

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/4/22 For Loops 24

0
1
2

id4

5
4
7

seq id4

ERASE WHOLE FRAME

No changes
to folder

On The Other Hand

def copy_add_one(thelist):
"""Returns: copy with 1 added to every element
Precondition: thelist is a list of all numbers
(either floats or ints)"""
mycopy = [] # accumulator
for x in thelist:

x = x+1
mycopy.append(x) # add to end of accumulator

return mycopy
10/4/22 For Loops 25

Accumulator keeps
result from being lost

How Can We Modify A List?

• Never modify iterable!
• This is an infinite loop:

for x in thelist:
thelist.append(1)

• Need a second sequence
• How about the positions?

thelist = [5, 2, 7, 1]
thepos = [0, 1, 2, 3]

for x in thepos:
thelist[x] = thelist[x]+1

10/4/22 For Loops 26

Try in Python Tutor
to see what happens

How Can We Modify A List?

• Never modify iterable!
• This is an infinite loop:

for x in thelist:
thelist.append(1)

• Need a second sequence
• How about the positions?

thelist = [5, 2, 7, 1]
thepos = [0, 1, 2, 3]

for x in thepos:
thelist[x] = thelist[x]+1

10/4/22 For Loops 27

Try in Python Tutor
to see what happens

This is the Motivation for Iterables

• Iterables are objects
§ Contain data like a list
§ But cannot slice them

• Have list-like properties
§ Can use then in a for-loop
§ Can convert them to lists
§ mylist = list(myiterable)

• Example: Files
§ Use open() to create object
§ Makes iterable for reading

10/4/22 For Loops 28

0
1
2

id1

5
4
7

seq id1

id2
alt id2

?

Iterables, Lists, and For-Loops

>>> file = open('sample.txt')
>>> list(file)
['This is line 1\n',
'This is line 2\n']
>>> file = open('sample.txt')
>>> for line in file:
… print(line)
This is line one

This is line two

10/4/22 For Loops 29

0
1
2

id1

5
4
7

seq id1

id2
alt id2

?print adds \n
in addition to
one from file

The Range Iterable

• range(x)
§ Creates an iterable
§ Stores [0,1,…,x-1]
§ But not a list!
§ But try list(range(x))

• range(a,b)
§ Stores [a,…,b-1]

• range(a,b,n)
§ Stores [a,a+n,…,b-1]

• Very versatile tool
• Great for processing ints

total = 0
add the squares of ints
in range 2..200 to total

for x in range(2,201):
total = total + x*x

10/4/22 For Loops 30

Accumulator

Modifying the Contents of a List

def add_one(thelist):
"""(Procedure) Adds 1 to every element in the list
Precondition: thelist is a list of all numbers
(either floats or ints)"""
size = len(thelist)
for k in range(size):

thelist[k] = thelist[k]+1
procedure; no return

10/4/22 For Loops 31

WORKS!

Iterator of list
positions (safe)

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
10/4/22 For Loops 32

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
10/4/22 For Loops 33

for x in sequence:
process x

for x in range(n):
do next thing

Cannot do this yet
Impossible w/ Python for

