Classes: Custom Types

 Class: Custom type not built into Python
= Just like with functions: built-in & defined
= Types not built-in are provided by modules
* Might seem weird: type(1) => <class 'int’>
= In Python 3 type and class are synonyms

= We will use the historical term for clarity

introcs provides several classes

Objects: Values for a Class

* Object: A specific value for a class type
= Remember, a type is a set of values
= Class could have infinitely many objects
e Example: Class is Point3
= One object is origin; another x-axis (1,0,0)
= These objects go in params distance function
* Sometimes refer to objects as instances
= Because a value is an instance of a class

= Creating an object is called instantiation

Demonstrating Object Instantiation

>>> import Point3 from introcs # Module with class
>>>p = Point3(0,0,0)
>>>p # Look at this new point
<class 'introcs.geom.point.Point3'>(0.0,0.0,0.0)

>>> type(p) == Point3 # Check the type

Create point at origin

True
>>> q = Point3(1,R,3) # Make new point
>>>q # Look at this new point

<class 'introcs.geom.point.Point3'>(1.0,2.0,3.0)

Metaphor: Objects are Folders

>>> import introcs

Need to import module p Unique tab
that has Point class. . .
2 identifier

>>> p = introes.Point3(0,0,0) id

Constructor is function. ‘

Prefix w/ module name. X
>>> id(p) y
Shows the ID of p. } z

Object Variables

¢ Variable stores object name
= Reference to the object p ‘ id2 ‘ q ‘ id2 ‘
= Reason for folder analogy

¢ Assignment uses object name
= Example: q=p Poi
-omt3
= Takes name from p
= Puts the name in q
= Does not make new folder! y
e This is the cause of many
mistakes for beginners

Objects and Attributes

* Attributes live inside objects

o

= Can access these attributes

-
=9

3
e Access: <variable>.<attr> Point3

= Can use them in expressions

= Look like module variables 1.0
y (2.0

3.0

= Recall: math.pi

* Example

N

>

>>>p = introcs.Point3(1,2,3)

Objects Allow for Mutable Functions

* Mutable function: alters the parameters
= Often a procedure; no return value
 Until now, this was impossible
= Function calls COPY values into new variables
= New variables erased with call frame
= Original (global?) variable was unaffected
* But object variables are folder names
= Call frame refers to same folder as original
= Function may modify the contents of this folder

Example: Mutable Function Call

¢ Example: Global STUFF
1| def iner_x(q): id1 p| idl
2| gx=qx+1
>>> p = Point3(0,0,0) x

>>>pX
0.0 Call Frame %

>>> incr_x(p)

ERyg,
K "VII
>>>p.X OLR
1.0 Rangg

Surprise: All Values are Objects!

¢ Including basic values
= int, float, bool, str

Heap primtives @ Use arrows

d o
* Example:
>>>x =1000
o0]
10
Basic Types vs. Classes
Basic Types Classes
¢ Built-into Python e Provided by modules
¢ Refer to instances as values ¢ Refer to instances as objects
* Instantiate with literals * Instantiate w/ constructors
¢ Are all immutable e Can alter attributes
e Can ignore the folders e Must represent with folders

In doubt? Use the Python Tutor

7
Methods: Functions Tied to Objects
* Have seen object folders contain variables
= Syntax: (obj).(attribute) (e.g. p.x)
= These are called artributes
* They can also contain functions
= Syntax: (obj).(method)((arguments))
= Example: p.clamp(-1,1)
= These are called methods
¢ Visualizer will not show these inside folders
= Will see why in November (when cover Classes)
9
But Not Helpful to Think This Way
e Number folders are immutable >>>x = 1000
= “Variables” have no names >>>y = 1000
= No way to reach in folder >>> id(%)
= No way to change contents 4497040368
« [Hor04oges| > 1)
4497040368 4497040400
@ Makes a brand RSN A Al
new int folder >>> id(y)
4497040432
11

12

