
1

Classes: Custom Types

• Class: Custom type not built into Python
§ Just like with functions: built-in & defined
§ Types not built-in are provided by modules

• Might seem weird: type(1) => <class 'int’>
§ In Python 3 type and class are synonyms
§ We will use the historical term for clarity

introcs provides several classes

1

Objects: Values for a Class

• Object: A specific value for a class type
§ Remember, a type is a set of values
§ Class could have infinitely many objects

• Example: Class is Point3
§ One object is origin; another x-axis (1,0,0)
§ These objects go in params distance function

• Sometimes refer to objects as instances
§ Because a value is an instance of a class
§ Creating an object is called instantiation

2

Demonstrating Object Instantiation

>>> import Point3 from introcs # Module with class
>>> p = Point3(0,0,0) # Create point at origin
>>> p # Look at this new point
<class 'introcs.geom.point.Point3'>(0.0,0.0,0.0)
>>> type(p) == Point3 # Check the type
True
>>> q = Point3(1,2,3) # Make new point
>>> q # Look at this new point
<class 'introcs.geom.point.Point3'>(1.0,2.0,3.0)

3

Metaphor: Objects are Folders

>>> import introcs

>>> p = introcs.Point3(0,0,0)

>>> id(p)

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module
that has Point class.

Constructor is function.
Prefix w/ module name.

Unique tab
identifier

Shows the ID of p.

4

Object Variables

• Variable stores object name
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object name
§ Example: q = p
§ Takes name from p
§ Puts the name in q
§ Does not make new folder!

• This is the cause of many
mistakes for beginners

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

id2q

5

Objects and Attributes

• Attributes live inside objects
§ Can access these attributes
§ Can use them in expressions

• Access: <variable>.<attr>
§ Look like module variables
§ Recall: math.pi

• Example
>>> p = introcs.Point3(1,2,3)
>>> a = p.x + p.y

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

3.0a

6

2

Objects Allow for Mutable Functions

• Mutable function: alters the parameters
§ Often a procedure; no return value

• Until now, this was impossible
§ Function calls COPY values into new variables
§ New variables erased with call frame
§ Original (global?) variable was unaffected

• But object variables are folder names
§ Call frame refers to same folder as original
§ Function may modify the contents of this folder

7

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1
Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2
1.0x

ERASE WHOLE FRAME

Change
remains

8

Methods: Functions Tied to Objects

• Have seen object folders contain variables
§ Syntax: ⟨obj⟩.⟨attribute⟩ (e.g. p.x)
§ These are called attributes

• They can also contain functions
§ Syntax: ⟨obj⟩.⟨method⟩(⟨arguments⟩)
§ Example: p.clamp(-1,1)
§ These are called methods

• Visualizer will not show these inside folders
§ Will see why in November (when cover Classes)

9

Surprise: All Values are Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 1000
>>> id(x) 2.5x

2.5

id5

id5x

float

10

But Not Helpful to Think This Way

• Number folders are immutable
§ “Variables” have no names
§ No way to reach in folder
§ No way to change contents

>>> x = 1000
>>> y = 1000
>>> id(x)
4497040368
>>> id(y)
4497040400
>>> y = y+1
>>> id(y)
4497040432

1000

4497040368

4497040368x

int Makes a brand
new int folder

11

Basic Types vs. Classes

Basic Types

• Built-into Python
• Refer to instances as values
• Instantiate with literals
• Are all immutable
• Can ignore the folders

Classes

• Provided by modules
• Refer to instances as objects
• Instantiate w/ constructors
• Can alter attributes
• Must represent with folders

In doubt? Use the Python Tutor

12

