
1

What Are Algorithms?

Algorithm

• Step-by-step instructions
§ Not specific to a language
§ Could be a cooking recipe

• Outline for a program

Implementation

• Program for an algorithm
§ In a specific language
§ What we often call coding

• The filled in outline

• Good programmers can separate the two
§ Work on the algorithm first
§ Implement in language second

• Why approach strings as search-cut-glue

1

Difficulties With Programming

Syntax Errors

• Python can’t understand you
• Examples:

§ Forgetting a colon
§ Not closing a parens

• Common with beginners
§ But can quickly train out

Conceptual Errors

• Does what you say, not mean
• Examples:

§ Forgot last char in slice
§ Used the wrong argument

• Happens to everyone
§ Large part of CS training

Proper algorithm design 
reduces conceptual errors

2

Testing First Strategy

• Write the Tests First
Could be script or written by hand

• Take Small Steps
Do a little at a time; make use of placeholders

• Intersperse Programming and Testing
When you finish a step, test it immediately

• Separate Concerns
Do not move to a new step until current is done

3

Using Placeholders in Design

• Strategy: fill in definition a little at a time
• We start with a function stub

§ Function that can be called but is unfinished
§ Allows us to test while still working (later)

• All stubs must have a function header
§ But the definition body might be “empty”
§ Certainly is when you get started

4

A Function Stub

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
pass

Now pass is a note that is unfinished.
Can leave it there until work is done.

5

Outlining Your Approach

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
# Find the space between the two names
# Cut out the first name
# Cut out the last name
# Glue them together with a comma

Psuedocode

6



2

What is the Challenge?

• Pseudocode must correspond to Python
§ Preferably implementable in one line
§ Unhelpful: # Return the correct answer

• So what can we do?
§ Depends on the types involved
§ Different types have different operations
§ You should memorize important operations
§ Use these as building blocks

7

Stubbed Returns for Incremental Testing

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
end_first = introcs.find_str(s,' ')
first = s[:end_first]
# Cut out the last name
# Glue them together with a comma
return first       # Not the final answer

8

Working with Helpers

• Suppose you are unsure of a step
§ You maybe have an idea for pseudocode
§ But not sure if it easily converts to Python

• But you can specify what you want
§ Specification means a new function!
§ Create a specification stub for that function
§ Put a call to it in the original function

• Now can lazily implement that function

9

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form 
'last-name, first-name'
Precondition: s is in the form
'first-name last-name' with
with one blank between names""”
first = first_name(s)
# Cut out the last name
# Glue together with comma
return first # Stub 

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
'first-name last-name' with
one blank between names""" 
end = s.find(' ')
return s[:end]

10

A Word of Warning

• Do not go overboard with this technique
§ Do not want a lot of one line functions
§ Can make code harder to read in extreme

• Do it if the code is too long
§ I personally have a one page rule
§ If more than that, turn part into a function

• Do it if you are repeating yourself a lot
§ If you see the same code over and over
§ Replace that code with a single function call

11

Exercise: Anglicizing an Integer

• anglicize(1) is “one”
• anglicize(15) is “fifteen”
• anglicize(123) is “one hundred twenty three”
• anglicize(10570) is “ten thousand five hundred

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
pass # ???

12


