
1

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

1

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

“Returns” indicates a
fruitful function

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

2

What Makes a Specification “Good”?

• Software development is a business
§ Not just about coding – business processes
§ Processes enable better code development

• Complex projects need multi-person teams
§ Lone programmers do simple contract work
§ Teams must have people working separately

• Processes are about how to break-up the work
§ What pieces to give each team member?
§ How can we fit these pieces back together?

3

Preconditions are a Promise

• If precondition true
§ Function must work

• If precondition false
§ Function might work
§ Function might not

• Assigns responsibility
§ How to tell fault?

>>> to_centigrade(32.0)
0.0
>>> to_centigrade('32')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated

4

Testing Software

• You are responsible for your function definition
§ You must ensure it meets the specification
§ May even need to prove it to your boss

• Testing: Analyzing & running a program
§ Part of, but not the same as, debugging
§ Finds bugs (errors), but does not remove them

• To test your function, you create a test plan
§ A test plan is made up of several test cases
§ Each is an input (argument), and its expected output

5

Representative Tests

• We cannot test all possible inputs
§ “Infinite” possibilities (strings arbritrary length)
§ Even if finite, way too many to test

• Limit to tests that are representative
§ Each test is a significantly different input
§ Every possible input is similar to one chosen

• This is an art, not a science
§ If easy, no one would ever have bugs
§ Learn with much practice (and why teach early)

6

2

Representative Tests

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Simplest
case first!

A little
complex

“Weird”
cases

7

The Rule of Numbers

• When testing the numbers are 1, 2, and 0
• Number 1: The simplest test possible

§ If a complex test fails, what was the problem?
§ Example: Word with just one vowels

• Number 2: Add more than was expected
§ Example: Multiple vowels (all ways)

• Number 0: Make something missing
§ Example: Words with no vowels

8

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns a copy of n in the form 'last-name, first-name’

Precondition: n is in the form 'first-name last-name'
with one or more spaces between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White’) returns 'White, Walker'
§ last_name_first('Walker White’) returns 'White, Walker'

Precondition
forbids a 0th test

9

Unit Test: An Automated Test Script

• A unit test is a script to test a single function
§ Imports the function module (so it can access it)
§ Imports the introcs module (for testing)
§ Implements one or more test cases

• A representative input
• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):
"""Quit program if expected and received differ"""

10

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Test multiple spaces between names
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')

Actual Output
Input

Expected Output

Comment
describing test

11

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name passed all tests.')

No tests happen
if you forget this

12

