One-on-One Sessions

 Starting Monday: 1/2-hour one-on-one sessions

= Bring computer to work with instructor, TA or consultant

= Hands on, dedicated help with Labs 5 & 6 (and related)

= To prepare for assignment, not for help on assignment
e Limited availability: we cannot get to everyone

= Students with experience or confidence should hold back
* Sign up online in CMS: first come, first served

= Choose assignment One-on-One

= Pick a time that works for you; will add slots as possible

= Can sign up starting at Spm TOMORROW

String: Text as a Value

* String are quoted characters

= 'abc d' (Python prefers) \' single quote
= "abc d" (most languages) \" double quote
* How to write quotes in quotes? \\rt‘ = fine
tal
* Delineate with “other quote” \\ backslash

= Example: "Don't" or '6" tall'
= What if need both " and ' ? >>>x =T said: "Don\'t"
>>> print(x)

* Solution: escape characters I said: "Don't"

= Format: \ + letter
= Special or invisible chars

String are Indexed

e s="abcd e 5 ="Hello all'
01234 012345678

[a]pe] [d] [Ele[2]1]o] Jal1]1]

e Access characters with [] ¢ What is s[3:6]?

= g[0]is 'a'
= g4]is d A:'loa
B: 'lo'
= g[B] causes an error C: o’
= 5[0:2] is 'ab' (excludes c) Do’
= glR]is'cd E: I do not know

e Called “string slicing”

Other Things We Can Do With Strings

e QOperation in: 8; in sg ¢ Function len: len(s)
= Tests if 5; “a part of”” 55 = Value is # of chars in s
= Say s, a substring of s; = Evaluates to an int

= Evaluates to a bool

* Examples: * Examples:
= s ='abracadabra' = g ='abracadabra’
= 'g'in § == True = len(s) == 11
= 'cad' in s == True = len(s[1:5]) ==
= 'foo' in s == False = g[1:len(s)-1] == 'bracadabr'

Defining a String Function

>>> middle(‘abe') def middle(text):
b ""Returns: middle 3¢ of text
Param text: a string™"
>>> middle(‘aabbec')
bb' # Get length of text
size = len(text)
>>> middle(‘aaabbbeee’) # Start of middle third
bbb’ start = size//3
End of middle third
end = 2*size//3
Get the text
result = text[start:end]
Return the result

return result

Procedures vs. Fruitful Functions

Procedures Fruitful Functions

* Functions that do something ¢ Functions that give a value

e Call them as a statement e Call them in an expression
¢ Example: greet('Walker") ¢ Example: x = round(.56,1)
Historical Aside

e Historically “function” = “fruitful function”
e But now we use “function” to refer to both

Print vs. Return

Print Return

¢ Displays a value on screen
= Used primarily for testing

¢ Defines a function’s value
= Important for calculations

= Not useful for calculations = But does not display anything

def print_plus(n): def return_plus(n):

| print(n+1) | return (n+1)

>>> x = print_plus(R) >>> x = return_plus(R)
3

X

e 23]

>>>

Method Calls

* Methods calls are unique (right now) to strings
= Like a function call with a “string in front”

e Method calls have the form

string.name(x.y,...)

method
name

argument arguments

* The string in front is an additional argument
= Just one that is not inside of the parentheses
= Why? Will answer this later in course.

8
Examples of String Methods
o g1.index(ss) >>> g = 'abracadabra’
= Returns position of the >>> g.index(‘a")
first instance of Sg in 8; 0
>>> g.index('rac")
e g1.count(sg) 9
= Returns number of times >>> g.count('a’)
s, appears inside of s; 5
>>> g.count('x’'
e s.stripQ) 0 (0
. Ret.ums copy of s with no >>>' ab "stripQ)
white-space at ends o
ab
10
String Extraction Puzzle
def second(text): >>> second(‘cat,u dog, mouse, lion")
""Returns: second elt in text 'dog'
The text is a sequence of words >>> gecond(apple, pear, banana!)
separated by commas, spaces. 'pear’ -
Ex: second(’A, B, C’) rets 'B'
Param text: a list of words™"
1| start = text.index(',) # SEARCH
2| tail = text[start+1:] # CUT
3| end=tailindex(,) # SEARCH
4 result=taillend] # CUT
5

7
Example: upper()
e upper(): Return an upper case copy
>>> g = "Hello World’
>>> g.upper()
'HELLO WORLD'
>>> g[1:8].upper() # Str before need not be a variable
'ELLO'
>>>'abc'.upper() # Str before could be a literal
IABC?
* Notice that only argument is string in front
9
String Extraction Example
def firstparens(text): >>> g = 'Prof (Walker) White'

""Returns: substring in >>> firstparens(s)

Uses the first set of parens "Walker'

Param text: a string with O™ oo t="(A)B(Q) D'

SEARCH for open parens >>> firstparens(t)

start = text.index(‘('g) N

CUT before paren

tail = text[start+1:]

SEARCH for close parens

end = tail.index(")")

CUT and return the result

return tail[:end]

11

return result

12

