Lecture 14

Recursion

Announcements for Today

Prelim 1

Assignments

e Review session Sunday
* Time still TBA

= Announce tomorrow

 Exam Tuesday 7:30 pm

= A—C in Ives 305
* D-Z in Bailey 101

e Graded by Wed night

= QOffice hours open on Thur

10/14/21

e Assignment 3 still grading

Done by tomorrow
Survey is still open
Only 525 survey responses

e Assignment 4 is now up!

Recursion

Parts 1-3: Can do already
Part 4: Material from today
Part 5: Covered on Thursday

Due in two weeks

Recursion

* Recursive Definition:
A definition that 1s defined in terms of itself
* Recursive Function:
A function that calls itself (directly or indirectly)

PIP stands for “PIP Installs Packages™

10/14/21 Recursion

A Mathematical Example: Factorial

e Non-recursive definition:
nl=n Xn-1X ... X2 X1
=nm-1 X ... X2 X1)

e Recursive definition:
n!=n(n-1)! forn>0 Recursive case
O!'=1 Base case

What happens if there 1s no base case?

10/14/21 Recursion

Factorial as a Recursive Function

def factorial(n): en!=n(n-1)!
""Returns: factorial of n.
e 0! =1

Pre: n >0 an int"""

ifn==
~ return 1 Base case(s)

return n*factorial(n-1) | Recursive case

What happens if there 1s no base case?

10/14/21 Recursion

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8, 13, ...
dg Ay a, asz da, ds dg

= Get the next number by adding previous two

= What is ag? A: ag=21
B: ag=29
C:. ag=34
D: None of these.

10/14/21 Recursion

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8, 13, ...
dg Ay a, asz da, ds dg

= Get the next number by adding previous two

= What is ag? A: ag=21

B: ag=29

C: ag=34 correct
D: None of these.

10/14/21 Recursion

Example: Fibonnaci Sequence

* Sequence of numbers: 1,1,2,3,5,8, 13, ...
dg dy dr A3 Ay d5 dg
= Get the next number by adding previous two
* What 1s ag?

e Recursive definition:

"a,=a,,+a,, Recursive Case
"aqy=1 Base Case
"a, =1 (another) Base Case

Why did we need two base cases this time?

10/14/21 Recursion

Fibonacci as a Recursive Function

def fibonacei(n):
"""Returns: Fibonacci no. 4,
Precondition: n = O an int"""
if n<=1:

| return 1

Base case(s)

return (fibonacei(n-1)+
fibonaceci(n-2))

Recursive case

Note difference with base case conditional.

10/14/21 Recursion

Fibonacci as a Recursive Function

def fibonacei(n): Function that calls itself
"""Returns: Fibonacci no. 4, = Each call is new frame
Precondition: n = 0 an int""" = Frames require memory
ifn<=1: = o calls = c© memory
| return 1
fibonacci 3
return (fibonacei(n-1)+ n| S
fibonacei(n-R)) /\
fibonacci 1 fibonacci 1
n 4 n 3

10/14/21 Recursion 10

Fibonacci: # of Frames vs. # of Calls

* Fibonacci 1s very inetficient.

10/

* fib(n) has a stack that i1s always <n

= But fib(n) makes a lot of redundant calls

fib(5)
/\
fib(4) fib(3)
fib(3) fib(2) fib(2)| |fib(1)
fib(2)| |fib(1) fib(1) | | fib(0)| |fib(1)| |fib(0)
>\
lég;p(l) flb(O) Recursion

Fibonacci: # of Frames vs. # of Calls

* Fibonacci 1s very inetficient.

10/

* fib(n) has a stack that i1s always <n

= But fib(n) makes a lot of redundant calls

Sp)

fib(0)

Recursion

fib(5)
Path to end = / \
the call stack fib(4) fib(3)
fib(3) fib(2) fib(2) | |fib(1)
fib(2) | |fib(1) fib(1) | | fib(0)| | fib(1) | |fib(0)
P

Recursion vs Iteration

e Recursion is provably equivalent to iteration

= Jteration includes for-loop and while-loop (later)

* Anything can do in one, can do in the other

* But some things are easier with recursion

* And some things are easier with iteration

* Will not teach you when to choose recursion

= This 1s a topic for more advanced classes

* We just want you to understand the technique

10/14/21 Recursion

13

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/14/21

data

Recursion

14

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P

10/14/21 Recursion 15

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P
\ J
Y

Combine Answer!
10/14/21 Recursion 16

Divide and Conquer Example

Count the number of 'e's in a string:

ple ninj|e
\\/_/ _ J
One 'e' One 'e'

10/14/21 Recursion 17

Divide and Conquer Example

Count the number of 'e's in a string:

Zero'e's Two 'e's

10/14/21 Recursion 18

Divide and Conquer Example

Count the number of 'e's in a string:

ple|n|n|e
\— 4

\/

p+enne

10/14/21 Recursion 19

Three Steps for Divide and Conquer

1. Decide what to do on “small” data

= Some data cannot be broken up

= Have to compute this answer directly

2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers

= Assume the smaller answers are correct
= Combining them should give bigger answer

10/14/21 Recursion 20

Divide and Conquer Example

def num_es(8):
"""Returns: # of 'e's in s"""
1. Handle small data

if g=="

 return 1 if s[0] == "e' else O

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right
10/14/21

" return O
elif len(s) == 1:

Recursion

“Short-cut” for

if s[0] == "¢’
return 1

else:
return O

0] s[1:]

plle|n|n

0O + 2

21

Divide and Conquer Example

def num_es(s): “Short-cut” for
"""Returns: # of 'e's in s"™"
1. Handle small data if s[0] == "e"
if g==" return 1

. return 0 M else:
elif len(s) == 1: return O

 return 1 if s[0] == "e' else O

s[O] s[1:]

plle|n|n

0O + 2

10/14/21 Recursion

Divide and Conquer Example

def num_es(s): “Short-cut” for
"""Returns: # of 'e's in s"""
if s[0] =="e":
return 1
| M else:
return O
|
2. Break into two parts s[O] s[1:]
left = num_es(s[0])
right = num_es(s[1:]) p c|n|n
0O + 2

10/14/21 Recursion

Divide and Conquer Example

def num_es(8):
"""Returns: # of 'e's in s"""

3. Combine the result
return left+right
10/14/21

Recursion

“Short-cut” for

if s[0] == "¢’
return 1

else:
return O

0] s[1:]

plle|n|n

0O + 2

24

Divide and Conquer Example

def num_es(s):

"""Returns: # of 'e's in s"™"

1. Handle small data N
ifg=="

" return O > [Base Case }
elif len(s) == 1:

- return 1 if s[0] =="e' else 0

2. Break into two parts N
left = num_es(s[0]) .
right = num_es(s[1:]) > [Recursive]

Case

3. Combine the result
return left+right Y,

10/14/21 Recursion

Exercise: Remove Blanks from a String

def deblank(s):
’ um'RetuI'nS: S but with its bl&nks removed"""

1. Decide what to do on “small” data

= If it is the empty string, nothing to do

ifg=="
.~ return s

= If it is a single character, delete it if a blank

ifs=="'"" # There is a space here
. return" # Empty string

else:

. return s

10/14/21 Recursion 26

Exercise: Remove Blanks from a String

def deblank(s):
’ um'RetuPnS: S but with its bl&nks removed"""

2. Decide how to break it up

left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation

10/14/21 Recursion

27

Putting it All Together

def deblank(s):

"""Returns: s w/o0 blanks"""
if g==")

. peturn s
>[Handle small data }

elif len(s) == 1.
- return "if s[0]==""elses

left = deblank(s[0]) [Break up the dat }
right = deblank(s[1:]) B

return left+right }[Combine answers }

10/14/21 Recursion 28

Putting it All Together

def deblank(s):

if g=="

. return s

elif len(s) == 1:

~ return " if §[0] ==

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/14/21

"""Returns: s w/o0 blanks"""

''else 8§

>£ Base Case }

/
N

Recursive
Case

|

4

Recursion

29

Minor Optimization

def deblank(s):

"""Returns: s w/o blanks""
if g=="

. return s

elif len(s) == 1: - N
| peturn " if S[0] == "' else s Needed second

base case to

left = deblank(s[0]) 9 handle s[0] y
right = deblank(s[1:])

return left+right

10/14/21 Recursion

30

Minor Optimization

def deblank(s):

if g=="
. return s

left = s[O]

if s[0] ==""
 left="

right = deblank(s[1:])

return left+right

10/14/21

"""Returns: s w/o0 blanks"""

d Eliminate the

second base

9 by combining y

Less recursive calls}

Recursion

31

Following the Recursion

deblank a b C

10/14/21 Recursion

Following the Recursion

10/14/21

deblank

b

deblank

Recursion

33

Following the Recursion

10/14/21

deblank a b C
deblank | a b C
a deblank b C

Recursion

34

Following the Recursion

10/14/21

deblank a b C
deblank | a b C

a deblank b C
deblank | b C

Recursion

35

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

10/14/21 Recursion

Following the Recursion

10/14/21

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | c

Recursion

37

Following the Recursion

10/14/21

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | c

C Recursion

38

Following the Recursion

10/14/21

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | c

C Recursion Q

39

Following the Recursion

10/14/21

deblank a b

deblank | a b

a deblank b

deblank | b

b deblank

x deblank | c

Recursion

=
=

40

Following the Recursion

10/14/21

deblank a b

deblank | a b

a deblank b

deblank | b

b deblank

x deblank | c

Recursion

¢33

41

Following the Recursion

10/14/21

deblank a b

a

X

X

deblank | a b

deblank b

deblank | b

deblank

deblank | c

Recursion

L3339

42

Following the Recursion

10/14/21

deblank a b

a

X

X

deblank | a b

deblank b

deblank | b

deblank

deblank | c

Recursion

43

Following the Recursion

10/14/21

deblank a b

a

X

X

Xdeblank a b

deblank b

deblank | b

deblank

deblank | c

Recursion

22222

44

Following the Recursion

10/14/21

deblank a b

a

X

X

Xdeblank a b

deblank b

deblank | b

deblank

deblank | c

Recursion

222222

45

Final Modification

def deblank(s):
"""Returns: s w/o blanks"""
if g=="

| return s Real work done here}

left = s[O]

if s[0] ==""
 left="

right = deblank(s[1:])

return left+right

10/14/21 Recursion

46

Final Modification

def deblank(s):
"""Returns: s w/o blanks"""
if g=="

| return s Real work done here}

left = s

if s[0] in string.whitespace Module string has special

 left =" constants to simplify

right = deblank(s[1:]) detection of whitespace
and other characters.

return left+right

10/14/21 Recursion

47

Next Time: Breaking Up Recursion

10/14/21

Recursion

48

