
Recursion

Lecture 14



Announcements for Today

Prelim 1

• Review session Sunday
§ Time still TBA
§ Announce tomorrow

• Exam Tuesday 7:30 pm
§ A–C in Ives 305
§ D-Z in Bailey 101

• Graded by Wed night
§ Office hours open on Thur

Assignments

• Assignment 3 still grading
§ Done by tomorrow
§ Survey is still open
§ Only 525 survey responses

• Assignment 4 is now up!
§ Parts 1-3: Can do already
§ Part 4: Material from today
§ Part 5: Covered on Thursday
§ Due in two weeks

10/14/21 Recursion 2



Recursion

• Recursive Definition: 
A definition that is defined in terms of itself

• Recursive Function: 
A function that calls itself (directly or indirectly)

PIP stands for “PIP Installs Packages”

10/14/21 Recursion 3



A Mathematical Example: Factorial

• Non-recursive definition:
n! = n× n-1 ×… × 2 × 1  

= n (n-1 ×… × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

10/14/21 Recursion 4

for n > 0 Recursive case
Base case

What happens if there is no base case?



Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1

10/14/21 Recursion 5

What happens if there is no base case?

Recursive case

Base case(s)



Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

10/14/21 Recursion 6

A:  a8 = 21
B:  a8 = 29
C:  a8 = 34
D: None of these.



Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

10/14/21 Recursion 7

A:  a8 = 21
B:  a8 = 29
C:  a8 = 34
D: None of these.

correct



Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

10/14/21 Recursion 8

Why did we need two base cases this time?



Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an
Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

10/14/21 Recursion 9

Recursive case

Base case(s)

Note difference with base case conditional.



Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an
Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

• Function that calls itself
§ Each call is new frame
§ Frames require memory
§ ∞ calls = ∞ memory

10/14/21 Recursion 10

n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3



Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)
11Recursion

fib(3)

fib(2) fib(1)

fib(0)fib(1)

10/14/21



Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)
12Recursion

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end = 
the call stack

10/14/21



Recursion vs Iteration

• Recursion is provably equivalent to iteration
§ Iteration includes for-loop and while-loop (later)
§ Anything can do in one, can do in the other

• But some things are easier with recursion
§ And some things are easier with iteration

• Will not teach you when to choose recursion
§ This is a topic for more advanced classes

• We just want you to understand the technique
10/14/21 Recursion 13



Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/14/21 Recursion 14

data



Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/14/21 Recursion 15

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P



Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/14/21 Recursion 16

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!



Divide and Conquer Example

Count the number of 'e's in a string:

10/14/21 Recursion 17

p e nn e

Two 'e's

p e nn e

One 'e' One 'e'



Divide and Conquer Example

Count the number of 'e's in a string:

10/14/21 Recursion 18

p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's



Divide and Conquer Example

Count the number of 'e's in a string:

10/14/21 Recursion 19

p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's

Will talk about how to break-up later



Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combining them should give bigger answer

10/14/21 Recursion 20



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/14/21 Recursion 21

p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/14/21 Recursion 22

p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/14/21 Recursion 23

p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/14/21 Recursion 24

p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

10/14/21 Recursion 25

Base Case

Recursive
Case



Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
§ If it is the empty string, nothing to do

if s == '':
return s

§ If it is a single character, delete it if a blank
if s == ' ':     # There is a space here

return '' # Empty string
else:

return s
10/14/21 Recursion 26



Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

2. Decide how to break it up
left = deblank(s[0])      # A string with no blanks
right = deblank(s[1:])   # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation

10/14/21 Recursion 27



Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/14/21 Recursion 28

Handle small data

Break up the data

Combine answers



Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/14/21 Recursion 29

Base Case

Recursive
Case



Minor Optimization

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/14/21 Recursion 30

Needed second
base case to 
handle s[0]



Minor Optimization

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s

left = s[0]
if s[0] == ' ':

left = ''
right = deblank(s[1:])

return left+right

10/14/21 Recursion 31

Eliminate the 
second base 

by combining

Less recursive calls



Following the Recursion

a b cdeblank

10/14/21 Recursion 32



Following the Recursion

a b cdeblank

a b cdeblank

10/14/21 Recursion 33



Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

10/14/21 Recursion 34



Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

b cdeblank

10/14/21 Recursion 35



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

10/14/21 Recursion 36



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/14/21 Recursion 37



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c10/14/21 Recursion 38



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c10/14/21 Recursion 39



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
10/14/21 Recursion 40



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

10/14/21 Recursion 41



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗

10/14/21 Recursion 42



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗
cba

10/14/21 Recursion 43



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗
cba

cba✗

10/14/21 Recursion 44



Following the Recursion

a b c

a

b

c c

c

cb

cb

cba

cba

cba

✗

✗

✗

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/14/21 Recursion 45



Final Modification

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s

left = s[0]
if s[0] == ' ':

left = ''
right = deblank(s[1:])

return left+right

10/14/21 Recursion 46

Real work done here



Final Modification

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s

left = s
if s[0] in string.whitespace

left = ''
right = deblank(s[1:])

return left+right

10/14/21 Recursion 47

Module string has special 
constants to simplify 

detection of whitespace 
and other characters.

Real work done here



Next Time: Breaking Up Recursion

10/14/21 Recursion 48


