
10/4/21

1

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
result = 0
result = result + thelist[0]
result = result + thelist[1]
…
return result

There is a
problem here

1

Working with Sequences

• Sequences are potentially unbounded
§ Number of elements inside them is not fixed
§ Functions must handle sequences of different lengths
§ Example: sum([1,2,3]) vs. sum([4,5,6,7,8,9,10])

• Cannot process with fixed number of lines
§ Each line of code can handle at most one element
§ What if # of elements > # of lines of code?

• We need a new control structure

2

The For-Loop

Create local var x
x = seqn[0]
print(x)
x = seqn[1]
print(x)
…
x = seqn[len(seqn)-1]
print(x)

Write as a for-loop
for x in seqn:

print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

Key ConceptsNot valid
Python

3

Executing a For-Loop

The for-loop:

for x in seqn:
print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

seqn has
more elts

put next
elt in x

True

False
print(x)

Usually
a sequence

4

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""
result = 0

for x in thelist:
result = result + x

return result

• iterable: thelist
• loop variable: x
• body: result=result+x

Accumulator
variable

5

Example: String-Based Accumulator

def despace(s):
"""Returns: s but with its spaces removed
Precondition: s is a string"""
result = ''
for x in s:

if x != '':
result = result+x

return result

Body

6

10/4/21

2

Modifying the Contents of a List

def add_one(thelist):
"""(Procedure) Adds 1 to every element in the list
Precondition: thelist is a list of all numbers
(either floats or ints)"""
for x in thelist:

x = x+1
procedure; no return

DOES NOT WORK!

7

On The Other Hand

def copy_add_one(thelist):
"""Returns: copy with 1 added to every element
Precondition: thelist is a list of all numbers
(either floats or ints)"""
mycopy = [] # accumulator
for x in thelist:

x = x+1
mycopy.append(x) # add to end of accumulator

return mycopy

Accumulator keeps
result from being lost

8

How Can We Modify A List?

• Never modify loop var!
• This is an infinite loop:

for x in thelist:
thelist.append(1)

• Need a second sequence
• How about the positions?

thelist = [5, 2, 7, 1]
thepos = [0, 1, 2, 3]

for x in thepos:
thelist[x] = x+1

Try in Python Tutor
to see what happens

9

This is the Motivation for Iterables

• Iterables are objects
§ Contain data like a list
§ But cannot slice them

• Have list-like properties
§ Can use then in a for-loop
§ Can convert them to lists
§ mylist = list(myiterable)

• Example: Files
§ Use open() to create object
§ Makes iterable for reading

0
1
2

id1

5
4
7

seq id1

id2
alt id2

?

10

The Range Iterator

• range(x)
§ Creates an iterator
§ Stores [0,1,…,x-1]
§ But not a list!
§ But try list(range(x))

• range(a,b)
§ Stores [a,…,b-1]

• range(a,b,n)
§ Stores [a,a+n,…,b-1]

• Very versatile tool
• Great for processing ints

total = 0
add the squares of ints
in range 2..200 to total

for x in range(2,201):
total = total + x*x

Accumulator

11

Modifying the Contents of a List

def add_one(thelist):
"""(Procedure) Adds 1 to every element in the list
Precondition: thelist is a list of all numbers
(either floats or ints)"""
size = len(thelist)
for k in range(size):

thelist[k] = thelist[k]+1
procedure; no return

WORKS!

Iterator of list
positions (safe)

12

