
9/26/21

1

Using Color Objects in A3

• New classes in introcs
§ RGB, CMYK, and HSV

• Each has its own attributes
§ RGB: red, blue, green
§ CMYK: cyan, magenta,

yellow, black
§ HSV: hue, saturation, value

• Attributes have invariants
§ Limits the attribute values
§ Example: red is int in 0..255
§ Get an error if you violate

>>> import introcs
>>> c = introcs.RGB(128,0,0)
>>> r = c.red
>>> c.red = 500 # out of range
AssertionError: 500 outside [0,255]

id1c

128r

id1

red 128

green 0

blue 0

RGB

1

Errors and the Call Stack

error.py

def function_1(x,y):

return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print(function_1(1,0))

Crashes produce the call stack:
Traceback (most recent call last):

File "error.py", line 20, in <module>
print(function_1(1,0))

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

10/3/19 Asserts & Error Handling 2

Make sure you can see
line numbers in Atom.

2

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbers"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zeroWhere is the error?

3

Assert Statements

• Form 1: assert <boolean>
§ Does nothing if boolean is True
§ Creates an error is boolean is False

• Form 2: assert <boolean>, <string>
§ Very much like form 2
§ But error message includes the string

• Statement to verify a fact is true
§ Similar to assert_equals used in unit tests
§ But more versatile with complete stack trace

4

Example: Anglicizing an Integer

def anglicize(n):

"""Returns: the anglicization of int n.
Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, repr(n)+' is not an int'
assert 0 < n and n < 1000000, repr(n)+' is out of range'
Implement method here…

Check (part of)
the precondition

Error message
when violated

5

Enforcing Preconditions is Tricky!

def lookup_netid(nid):

"""Returns: name of student with netid nid.
Precondition: nid is a string, which consists of
2 or 3 letters and a number"""
assert type(nid) == str, repr(nid) + ' is not a string'
assert nid.isalnum(), repr(nid)+' is not letters/digits'

Returns True if s contains
only letters, numbers.

Does this catch
all violations?

6

9/26/21

2

Using Function to Enforce Preconditions

def exchange(curr_from, curr_to, amt_from):

"""Returns: amount of curr_to received.
Precondition: curr_from is a valid currency code
Precondition: curr_to is a valid currency code
Precondition: amt_from is a float"""

assert ??????, repr(curr_from) + ' not valid'
assert ??????, repr(curr_from) + ' not valid'
assert type(amt_from)==float, repr(amt_from)+' not a float'

7

Using Try-Except

try:
result = input('Number: ') # get number
x = float(result) # convert to float
print('The next number is '+str(x+1))

except:
print('That is not a number!')

Similar to if-else
§ But always does the try block
§ Might not do all of the try block

Conversion
may crash!

Execute if crashes

8

Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string
s represents a float"""
try:

x = float(s)
return True

except:
return False

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

9

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error

function_1

function_2

function_3
pops

pops
line in a try

10

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

11

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

12

