
Memory in Python

Lecture 10

Announcements For This Lecture

Assignment 1
• Work on your revisions

§ Read feedback carefully
§ Want done by tomorrow
§ Partial credit after Wed.

• Survey: 645 responded
§ Deadline is tomorrow
§ Avg Time: 6.4 hours
§ STD Dev: 4 hours

More Assignments
• Assignment 2 THURSDAY

§ Scan and submit online
§ Upload before midnight
§ Late: -10% per day
§ No lates after Sunday

• Assignment 3 up tomorrow
§ Due week from Friday
§ Before you go on Fall Break
§ Graded when you get back

29/28/21 Memory in Python

The Three “Areas” of Memory

Global
Space

Call Stack

The
Heap

9/28/21 Memory in Python 3

Global Space

• This is the area you “start with”
§ First memory area you learned to visualize
§ A place to store “global variables”
§ Lasts until you quit Python

• What are global variables?
§ Any assignment not in a function definition
§ Also modules & functions!
§ Will see more on this in a bit

id2p

9/28/21 Memory in Python 4

The Call Stack

• The area where call frames live
§ Call frames are created on a function call
§ May be several frames (functions call functions)
§ Each frame deleted as the call completes

• Area of volatile, temporary memory
§ Less permanent than global space
§ Think of as “scratch” space

• Primary focus of Assignment 2

incr_x 2

id2q

9/28/21 Memory in Python 5

Heap Space or “The Heap”

• Where the “folders” live
§ Stores only folders

• Can only access indirectly
§ Must have a variable with identifier
§ Can be in global space, call stack

• MUST have variable with id
§ If no variable has id, it is forgotten
§ Disappears in Tutor immediately
§ But not necessarily in practice
§ Role of the garbage collector

id2

x 0.0

y 0.0

z 0.0

Point3

9/28/21 Memory in Python 6

Everything is an Object!

• Last time we saw that everything is an object
§ Must have a folder in the heap
§ Must have variable in global space, call stack
§ But ignore basic types (int, float, bool, str)

• Includes modules and function definitions!
§ Object is created by import
§ Object is created by def
§ Already seen this in Python Tutor

9/28/21 Memory in Python 7

Modules and Global Space

import math

9/28/21 Memory in Python 8

Global Space

id5mathHeap Space

id5
module

• Importing a module:
§ Creates a global variable

(same name as module)

§ Puts contents in a folder
• Module variables

• Module functions

§ Puts folder id in variable

• from keyword dumps
contents to global space

pi 3.141592

e 2.718281

functions

Modules vs Objects

Module Object

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

id2

id2math

module

pi 3.141592

e 2.718281

functions math.pi
math.cos(1)

p.x
p.clamp(-1,1)

9/28/21 Memory in Python 9

Modules vs Objects

Module Object

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

id2

id2math

module

pi 3.141592

e 2.718281

functions math.pi
math.cos(1)

p.x
p.clamp(-1,1)

The period (.) means

“go inside of the folder”

9/28/21 Memory in Python 10

So Why Have Both?

• Question is a matter of program design
§ Some software will use modules like objects

• Classes can have many instances
§ Infinitely many objects for the Point3 class
§ Reason we need a constructor function

• Each module is a unique instance
§ Only one possibility for pi, cosine
§ That is why we import them
§ Sometimes refer to as singleton objects

9/28/21 Memory in Python 11

So Why Have Both?

• Question is a matter of program design
§ Some software will use modules like objects

• Classes can have many instances
§ Infinitely many objects for the Point3 class
§ Reason we need a constructor function

• Each module is a unique instance
§ Only one possibility for pi, cosine
§ That is why we import them
§ Sometimes refer to as singleton objects

Choice is an advanced topic

beyond scope of this course

9/28/21 Memory in Python 12

How About import *?

Ouch!

9/28/21 Memory in Python 13

Functions and Global Space

• A function definition…
§ Creates a global variable

(same name as function)
§ Creates a folder for body
§ Puts folder id in variable

• Variable vs. Call
>>> to_centigrade
<fun to_centigrade at 0x100498de8>
>>> to_centigrade (32)
0.0

def to_centigrade(x):

return 5*(x-32)/9.0

9/28/21 Memory in Python 14

Global Space

id6to_centigrade

Heap Space

id6

Body

function

Body

Working with Function Variables

• So function definitions are objects
§ Function names are just variables
§ Variable refers to a folder storing the code
§ If you reassign the variable, it is lost

• You can assign them to other variables
§ Variable now refers to that function
§ You can use that NEW variable to call it
§ Just use variable in place of function name

9/28/21 Memory in Python 15

Example: add_one

Frame remembers
the original name

9/28/21 Memory in Python 16

Example: add_one

Frame remembers
the original name

Usage is an advanced topic

beyond scope of this course

9/28/21 Memory in Python 17

Why Show All This?

• Many of these are advanced topics
§ Only advanced programmers need
§ Will never need in the context of 1110

• But you might use them by accident
• Goal: Teach you to read error messages

§ Need to understand what messages say
§ Only way to debug your own code
§ This means understanding the call stack

9/28/21 Memory in Python 18

Recall: Call Frames

1. Draw a frame for the call
2. Assign the argument value

to the parameter (in frame)
3. Execute the function body

§ Look for variables in the frame
§ If not there, look for global

variables with that name

4. Erase the frame for the call

9/28/21 Memory in Python 19

def to_centigrade(x):
return 5*(x-32)/9.0

to_centigrade 1

50.0x

1

Call: to_centigrade(50.0)

Aside: What Happens Each Frame Step?

• The instruction counter always changes
• The contents only change if

§ You add a new variable
§ You change an existing variable
§ You delete a variable

• If a variable refers to a mutable object
§ The contents of the folder might change

9/28/21 Memory in Python 20

Recall: Call Frames

1. Draw a frame for the call
2. Assign the argument value

to the parameter (in frame)
3. Execute the function body

§ Look for variables in the frame
§ If not there, look for global

variables with that name

4. Erase the frame for the call

9/28/21 Memory in Python 21

def to_centigrade(x):
return 5*(x-32)/9.0

to_centigrade 1

50.0x

1

Call: to_centigrade(50.0)

What is happening here?

Global Space
(for globals.py)

Function Access to Global Space

• Consider code to right
§ Global variable a
§ Function definition get_a

• Consider the call get_a()
§ Call frame to the right
§ What happens?

9/28/21 Memory in Python 22

get_a 6

4a

globals.py
"""Show how globals work"""
a = 4 # global space

def get_a():
return a

A: It crashes
B: Returns None
C: Returns 4
D: I don’t know

Global Space
(for globals.py)

Function Access to Global Space

• Consider code to right
§ Global variable a
§ Function definition get_a

• Consider the call get_a()
§ Call frame to the right
§ What happens?

9/28/21 Memory in Python 23

get_a 6

4a

globals.py
"""Show how globals work"""
a = 4 # global space

def get_a():
return a

A: It crashes
B: Returns None
C: Returns 4
D: I don’t know

CORRECT

Global Space
(for globals.py)

Function Access to Global Space

• All function definitions
are in some module

• Call can access global
space for that module
§ math.cos: global for math
§ temperature.to_centigrade

uses global for temperature
• But cannot change values

§ Makes a new local variable!
§ Why we limit to constants

9/28/21 Memory in Python 24

get_a 6

4a

globals.py
"""Show how globals work"""
a = 4 # global space

def get_a():
return a

Global Space
(for globals.py)

Function Access to Global Space

• All function definitions
are in some module

• Call can access global
space for that module
§ math.cos: global for math
§ temperature.to_centigrade

uses global for temperature
• But cannot change values

§ Makes a new local variable!
§ Why we limit to constants

9/28/21 Memory in Python 25

change_a

3.5a

4a

globals.py
"""Show how globals work"""
a = 4 # global space

def change_a():
a = 3.5 # local variable

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first
7.
8. def first_name(s):
9. """Precond: see above"""
10. end = s.find(' ')
11. return s[0:end]
9/28/21 Memory in Python 26

Call: last_name_first('Walker White'):

last_name_first 4

'Walker White's

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first
7.
8. def first_name(s):
9. """Precond: see above"""
10. end = s.find(' ')
11. return s[0:end]
9/28/21 Memory in Python 27

Call: last_name_first('Walker White'):

last_name_first 4

'Walker White's

Not done. Do not erase!

first_name

'Walker White's

10

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first
7.
8. def first_name(s):
9. """Precond: see above"""
10. end = s.find(' ')
11. return s[0:end]
9/28/21 Memory in Python 28

Call: last_name_first('Walker White'):

last_name_first 4

'Walker White's

first_name

'Walker White's

11

end 6

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first
7.
8. def first_name(s):
9. """Precond: see above"""
10. end = s.find(' ')
11. return s[0:end]
9/28/21 Memory in Python 29

Call: last_name_first('Walker White'):

last_name_first 4

'Walker White's

first_name

'Walker White's

end 6

RETURN 'Walker'

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first
7.
8. def first_name(s):
9. """Precond: see above"""
10. end = s.find(' ')
11. return s[0:end]
9/28/21 Memory in Python 30

Call: last_name_first('Walker White'):

last_name_first 5

'Walker White's

first 'Walker'

ERASE WHOLE FRAME

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first

. . .
13. def last_name(s):
14. """Precond: see above"""
15. end = s.rfind(' ')
16. return s[end+1:]
9/28/21 Memory in Python 31

Call: last_name_first('Walker White'):

last_name_first 5

'Walker White's

first 'Walker'

last_name

'Walker White's

15

The Call Stack

• Functions are stacked
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)

• Stack represents memory
as a high water mark
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

9/28/21 Memory in Python 32

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6Frame 5

calls

calls

calls

calls

The Call Stack

• Functions are stacked
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)

• Stack represents memory
as a high water mark
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

9/28/21 Memory in Python 33

Frame 1

Frame 2

Frame 3

Frame 4

calls

calls

calls

The Call Stack

• Functions are stacked
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)

• Stack represents memory
as a high water mark
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

9/28/21 Memory in Python 34

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6

calls

calls

calls

calls

The Call Stack

• Functions are stacked
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)

• Stack represents memory
as a high water mark
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

9/28/21 Memory in Python 35

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6

calls

calls

calls

calls

Book adds a special
“frame” called module.

This is WRONG!
Module is global space

Anglicize Example

9/28/21 Memory in Python 36

Anglicize Example

9/28/21 Memory in Python 37

Global
Space

Call Stack

