
9/24/21

1

The Three “Areas” of Memory

Global
Space

Call Stack

The
Heap

1

Global Space

• This is the area you “start with”
§ First memory area you learned to visualize
§ A place to store “global variables”
§ Lasts until you quit Python

• What are global variables?
§ Any assignment not in a function definition
§ Also modules & functions!
§ Will see more on this in a bit

id2p

2

The Call Stack

• The area where call frames live
§ Call frames are created on a function call
§ May be several frames (functions call functions)
§ Each frame deleted as the call completes

• Area of volatile, temporary memory
§ Less permanent than global space
§ Think of as “scratch” space

• Primary focus of Assignment 2

incr_x 2

id2q

3

Heap Space or “The Heap”

• Where the “folders” live
§ Stores only folders

• Can only access indirectly
§ Must have a variable with identifier
§ Can be in global space, call stack

• MUST have variable with id
§ If no variable has id, it is forgotten
§ Disappears in Tutor immediately
§ But not necessarily in practice
§ Role of the garbage collector

id2

x 0.0

y 0.0

z 0.0

Point3

4

Modules and Global Space

import math

Global Space

id5mathHeap Space

id5
module

• Importing a module:
§ Creates a global variable

(same name as module)
§ Puts contents in a folder

• Module variables
• Module functions

§ Puts folder id in variable

• from keyword dumps
contents to global space

pi 3.141592

e 2.718281

functions

5

Functions and Global Space

• A function definition…
§ Creates a global variable

(same name as function)
§ Creates a folder for body
§ Puts folder id in variable

• Variable vs. Call
>>> to_centigrade

<fun to_centigrade at 0x100498de8>
>>> to_centigrade (32)

0.0

def to_centigrade(x):
return 5*(x-32)/9.0

Global Space

id6to_centigrade

Heap Space

id6

Body

function

Body

6

9/24/21

2

Recall: Call Frames

1. Draw a frame for the call
2. Assign the argument value

to the parameter (in frame)
3. Execute the function body

§ Look for variables in the frame
§ If not there, look for global

variables with that name
4. Erase the frame for the call

def to_centigrade(x):
return 5*(x-32)/9.0

to_centigrade 1

50.0x

1

Call: to_centigrade(50.0)

What is happening here?

7

Global Space
(for globals.py)

Function Access to Global Space

• All function definitions
are in some module

• Call can access global
space for that module
§ math.cos: global for math
§ temperature.to_centigrade

uses global for temperature
• But cannot change values

§ Makes a new local variable!
§ Why we limit to constants

change_a

3.5a

4a

globals.py
"""Show how globals work"""
a = 4 # global space

def change_a():
a = 3.5 # local variable

8

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first
7.
8. def first_name(s):
9. """Precond: see above"""
10. end = s.find(' ')
11. return s[0:end]

Call: last_name_first('Walker White'):

last_name_first 4

'Walker White's

Not done. Do not erase!

first_name

'Walker White's

10

9

Frames and Helper Functions

1. def last_name_first(s):
2. """Precond: s in the form
3. 'first-name last-name' """
4. first = first_name(s)
5. last = last_name(s)
6. return last + ',' + first

. . .
13. def last_name(s):
14. """Precond: see above"""
15. end = s.rfind(' ')
16. return s[end+1:]

Call: last_name_first('Walker White'):

last_name_first 5

'Walker White's

first 'Walker'

last_name

'Walker White's

15

10

The Call Stack

• Functions are stacked
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)

• Stack represents memory
as a high water mark
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6Frame 5

calls

calls

calls

calls

11

Anglicize Example

Global
Space

Call Stack

12

