Lecture 17/:

Classes
(Chapters 15 & 17.1-17.5)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Recall: Objects as Data in Folders

nums = [2,3,5] unique
identifier
nums|l] = 7
* An object is like a manila folder
: bl type
Contains variables Global Space " /
= called attributes nums | idl list
= Can change attribute values ;
(w/ assignment statements) s 3
: : : 1 7
* Tab identifies it 5 [

= Unique number assigned by Python
= Fixed for lifetime of the object

* Type listed 1n the corner

Classes are user-defined Types

Classes are how we add Example Classes
new types to Python e Point3
class name . Timer
id2 / * Rect
. Person
Point3
X 2
y 3
7 5

Simple Class Definition

class <class-name>():

""Class specification

<method definitions>

The Class Specification

Short
class Student(): Sumfflary J
\ "An instance is a Cornell student
[Attribute j&
list _ [Description and invariant
Instance Attributes:

netID: student's netlD [str], 2-3 letters + 1-4 digits
courses: nested list [[name0, n0], [namel, n1], ...]

name is course name [str], n is number of credits [int]
major: declared major [str]

mnimn
Attribute
Name

Constructors

 Function to create new instances
= function name 1s the class name

= Created for you automatically
 (Calling the constructor:
= Makes a new object folder

= Initializes attributes (see next slide)

= Returns the 1d of the folder

courses = [["CS 1110", 4], ["MATH 1920" 3]]
s = Student("abc123" courses, "Music")

Global Space
courses| id2 \ folder
nhot
s id8 rawn
id8
Student
netlD | ‘abcl23'
courses id2
major | "Music”

two
underscores

C

Special Method: __init__

def iinit_(self, netlID, courses, major):

""Initializer: creates a Student
called by the

Has netlD, courses and a major
constructor

netlD: [str], 2-3 letters + 1-4 digits
courses: nested list [[name0, n0], [namel, nl], ...]
name is course name [str],
n is number of credits [int]
major: declared major [str]
self.netID =netID
self.courses = courses
self.major = major

use self to
assign
attributes

s = Student("abc123", courses, "Music")
this is the call to the constructor, which calls __init__

Global Space
courses| id2 \ folder
nhot
S id8 rawn
id8
Student
netlD | 'abc123'
courses id2
major | "Music”

Evaluating a Constructor Expression

s = Student("abc123", courses, "Music")

Creates a new object (folder)
of the class Student on the heap

= Folder 1s initially empty
Executes the method __init__

= self = folder name = identifier

= Other arguments passed in order

= Executes commands in initializer

Returns folder name, the identifier

Global Space
courses| id2 \ Jolder
hot
s id8 rawn
id8
Student

netlD | 'abc123'

courses

1d2

major

"Music”

Truths about instantiating an object of a class

A) Instantiate an object by calling the constructor
B) The constructor creates the folder

C) The constructor returns the 1d of the folder

D) A constructor calls the 1mit method

E) 1t puts attributes in the folder

Invariants

Properties of an attribute that must be true

Works like a precondition:
* If invariant satisfied, object works properly

= If not satisfied, object 1s “corrupted”

Example:

= Point3 class: all attributes must be ints

Purpose of the class specification

11

Checking Invariants with an Assert

class Student():
""Instance is a Cornell student
def __init__(self, netID, courses, major):
""Initializer: instance with netID, and courses which defaults empty
netlD: [str], 2-3 letters + 1-4 digits
courses: nested list [[name0, n0], [namel, n], ...]
name is course name [str], n is number of credits [int]
major: declared major [str] "™

assert type(netID) == str, "netID should be type str"

assert netID[0].isalpha(), "netID should begin with a letter"

assert netID[-1].isdigit(), "netID should end with an int"

assert type(courses) == list, "courses should be a list"

assert major==None or type(major) == str, "major should be None or type str"

self.netlD = netID
self.courses = couress
self.major = major

12

Aside: The Value None

« The major attribute is a
problem.

= major is a declared major
= Some students don't have one!

Solution: use value None

= None: Lack of str
= Will reassign the field later!

1dd

netiD
courses
major

Student

‘abc123'

id2

None

13

Making Arguments Optional

* We can assign default values to _init__ arguments
= Write as assignments to parameters in definition

= Parameters with default values are optional

Examples:

sl = Student(“xy1234”, [], "History") # all parameters given
sl = Student(“xy1234”, course_list) # netID, courses given, major defaults to None

s1 = Student(“xy1234”, major="Art") # netlD, major given, courses defaults to []

class Student():

def __init__(self, netID, courses=[], major=None):

self.netID = netID

self.courses = courses

self.major = major

<rest of constructor goes here > 14

We know how to make:

Class definitions
Class specifications
The __init_ method
Attributes (using self)

15

Start next video:
Class attributes and
method definiations

16

We know how to make:

Simple class definitions
Class specifications
The __init_ method
Attributes (using self)

17

Continue developing our class Student ...

What if we want to track and limit the number of credits

a student is taking....

1dS
Student
netlD| 'abcl23’
courses| id2
major | "Music”
n_credit 15
Cmax_credit |22

Anything wrong with this?

1d6 1d7
Student Student
netlD| 'def456' netlD| 'gh7890'
courses| id3 courses| Id4
major | "History" major| "CS"
n_credit 14 n_credit 2]
—
max_credit| 22 DC max_credit| 22 D

18

Class Attributes

Class Attributes: Variables that belong to the Class
* One variable for the whole Class
» Shared by all object instances

» Access by <Class Name>.<attribute-name>

Why?
* Some variables are relevant to every object instance of a class

* Does not make sense to make them object attributes
* Doesn’t make sense to make them global variables, either

Example: we want all students to have the same credit limit
19

Class Attributes for CS1110

class Student():
""Instance is a Cornell student
max_credit = 22
def __init__(self, etID, courses, major):
< specs go here > aX crEd'\\ \\V
< assertions go here > \Where does .
self.netID = netID
self.courses = cour:cs
self.major = major
self.n_credit =0
for one_course in courses:
self.n_credit = self.n_credit + one_course[l] # add up all the credits

assert self.n_credit <= Student.max_credit, "over credit limit"
20

sl
S2

Separate for each instance
Example: 2 Student objects

idS

id6

Classes Have Folders Too
Object Folders

1dS

netlD
courses
major
n_credit

1d6

netlD
courses
major
n_credit

Student

‘abcl23'

id2

"Music"

15

Student

'def456'

id3

"History"

14

Class Folders

 PData common to all
instances

* Not just data!

* Everything common to
all instances goes here!

21

Objects can have Methods

Function: call with object as argument

<function-name>(<arguments>)
len(my_List)

Method: function tied to the object
<object-variable>.<function-call>
my_list.count(7)

» Attributes live in object folder
* Class Attributes live 1in class folder
e Methods live in class folder

1dd

netiD
courses
major

n_credit

Student

‘abc123'

id2

"Music"

15

22

Complete Class Definition

keyword class
Beginning of a
class definition

class <class-name>():

Specification —_— e e wm
(slzmilar to one — ""Class speC|flcat|0n

for a function)

_ <assignment statements>

to define 7 .
<method definitions>

class variables

to define class Student(): M

class """Specification goes here.""” Pgtthon Cfate;l

methods max_credit = 22 atter reading the
class definition

def _init__(self, netID, courses, major):
...<snip> ... 23

Method Definitions

Looks like a function def
= But indented inside class

=]st parameter always self
Example:
sl.enroll("AEM 2400", 4)

= Go to class folder for sl (i.e.,
Student) that’s where enroll is
defined

= Now enroll is called with sl
as 1its first argument

= Now enroll knows which
instance of Student it is
working with

class Student():

def __init__(self, netID, courses=[], major=None):
self.netID = netID

self.courses = courses

self.major = major

<rest of init fn goes here >

def enroll(self, name, n):
if self.n_credit + n > Student.max_credit:
print("Sorry your schedule is fulll")
else:

self.courses.append([name, n])
self.n_credit = self.n_credit +n
print("Welcome to "+ name)

24

We now know how to make:

Class definitions
Class specifications

The __init__ function
Attributes (using self)
Class attributes

Class methods

30

Class Gotchas... and how to avoid them

Rules to live by:

1. Refer to Class Attributes using the Class Name
s] = Student(“xy1234”, [], "History")

print(“max credits = “+str(Student.max_credit))

31

Name Resolution for Objects

e (object).(name) means sl | 1dS :
(J) () Id> Student
= Qo the folder for object netiD| xy1234
= Find attribute/method name courses id2
= If missing, check class folder major |_History"
n_credit 15

= [f not in either, raise error

s1 = Student(“xy1234”, [], "History")

!

finds attribute in object folder
print(sl.netID)
finds attribute in class folder

print(sl.max_credit) < dangerous 32

Accessing vs. Modifying Class Variables

* Recall: you cannot assign to a global variable
from 1nside a function call

 Similarly: you cannot assign to a class attribute
from “inside” an object variable

s] = Student(“xy1234”, [], "History")

Student.max_credit =23 # updates class attribute

sl.max_credit = 24 # creates new object attribute
called max_credit

Better to refer to Class Variables using the Class Name .

What gets Printed? (Q)

import college

s] = college.Student(“jl200",], "Art")
print(sl.max_credit)

s2 = college.Student(“jl202", [], "History")
print(s2.max_credit)

s2.max_credit = 23

print(sl.max_credit)
print(s2.max_credit)
print(college.Student.max_credit)

A:
22
22
23
23
23

22
22
23
23
22

C:
22
22
22
23
22

22
22
22
23
23

34

Class Gotchas... and how to avoid them

Rules to live by:

1. Refer to Class Attributes using the Class Name
s] = Student(“xy1234”, [], "History")

print(“max credits = “+str(Student.max_credit))

2. Don’t forget self
= 1n parameter list of method (method header)
* when defining method (method body)

36

Don’t forget self, Part 1

sl = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”) class Student():
sl.enroll("AEM 2400", 4) def __init__(self, netID, courses, major):
self.netlD = netID
4/\ self.courses = courses
<var>.<method name> always self.major = major
passes <var> as first argument # <rest of constructor goes here >

def enroll(sets name, n): # if you forget self

if self.n_credit + n > Student.max_credit:
print("Sorry your schedule is fulll")
else:

TYpEEI‘T'OI’: enrouo takes 2 self.courses.append((name, n))

positional arguments but 3 self.n_credit = self.n_credit +n
were given print("Welcome to "+ name)

37

Don’t forget self, Part 2 (Q)

sl = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”) class Student():

sl.enroll("AEM 2400", 4) def __init__(self, netID, courses, major):
What happens? self.netID = netID
A) Error self.courses = courses
B) Nothing, self is not needed self.major = major
C) creates new local variable n_credit # <rest of constructor goes here >
D) creates new instance variable

n_credit ef enroll(self, name, n):
E) creates new Class attribute n_credit j if setn_credit + n > Student.max_credit:
4 if you torgel sell ‘ print("Sorry your schedule is fulll")

else:
self.courses.append((name, n))
self.n_credit = self.n_credit + n

print("Welcome to "+ name) s

