
Objects

Lecture 9

Announcements for Today

Assignment 1

• We are starting grading
§ Will take most of the day
§ Grades 9am tomorrow

• Resubmit until correct
§ Read feedback in CMS
§ Reupload/request regrade

• If you were very wrong…
§ You got an e-mail
§ More 1-on-1s this week

Assignment 2

• Posted Today
§ Written assignment
§ Do while revising A1
§ Relatively short (2-3 hrs)

• Due next Tuesday
§ Submit as a PDF
§ Scan or phone picture
§ US Letter format!

9/26/19 Objects 2

The Basic Python Types

• Type int:
§ Values: integers
§ Ops: +, –, *, //, %, **

• Type float:
§ Values: real numbers
§ Ops: +, –, *, /, **

• Type bool:
§ Values: True and False
§ Ops: not, and, or

• Type str:
§ Values: string literals

• Double quotes: "abc"
• Single quotes: 'abc'

§ Ops: + (concatenation)

9/26/19 Objects 3

Are the the only
types that exist?

Example: Points in 3D Space

def distance(x0,y0,z0,x1,y1,z1):
"""Returns distance between points (x0,y0,y1) and (x1,y1,z1)

Param x0: x-coord of 1st point
Precond: x0 is a float

Param y0: y-coord of 1st point
Precond: y0 is a float

Param z0: z-coord of 1st point
Precond: z0 is a float
….
"""

• This is very unwieldy
§ Specification is too long
§ Calls needs many params
§ Typo bugs are very likely

• Want to reduce params
§ Package points together
§ How can we do this?

9/26/19 Objects 4

Points as Their Own Type

def distance(p0,p1):
"""Returns distance between points p0 and p1

Param p0: The second point
Precond: p0 is a Point3

Param p1: The second point
Precond: p1 is a Point3"""
…

This lecture will help you
make sense of this spec.

9/26/19 Objects 5

Classes: Custom Types

• Class: Custom type not built into Python
§ Just like with functions: built-in & defined
§ Types not built-in are provided by modules

• Might seem weird: type(1) => <class 'int’>
§ In Python 3 type and class are synonyms
§ We will use the historical term for clarity

introcs provides several classes

9/26/19 Objects 6

Objects: Values for a Class

• Object: A specific value for a class type
§ Remember, a type is a set of values
§ Class could have infinitely many objects

• Example: Class is Point3
§ One object is origin; another x-axis (1,0,0)
§ These objects go in params distance function

• Sometimes refer to objects as instances
§ Because a value is an instance of a class
§ Creating an object is called instantiation

9/26/19 Objects 7

How to Instantiate an Object?

• Other types have literals
§ Example: 1, 'abc', true
§ No such thing for objects

• Classes are provided by modules
§ Modules typically provide new functions
§ In this case, gives a function to make objects

• Constructor function has same name as class
§ Similar to types and type conversion
§ Example: str is a type, str(1) is a function call

9/26/19 Objects 8

Demonstrating Object Instantiation

>>> import Point3 from introcs # Module with class
>>> p = Point3(0,0,0) # Create point at origin
>>> p # Look at this new point
<class 'introcs.geom.point.Point3'>(0.0,0.0,0.0)
>>> type(p) == Point3 # Check the type
True
>>> q = Point3(1,2,3) # Make new point
>>> q # Look at this new point
<class 'introcs.geom.point.Point3'>(1.0,2.0,3.0)
9/26/19 Objects 9

What Does an Object Look Like?

• Objects can be a bit strange to understand
§ Don’t look as simple as strings or numbers
§ Example: <class 'introcs.Point3'>(0.0,0.0,0.0)

• To understand objects, need to visualize them
§ Use of metaphors to help us think like Python
§ Call frames (assume seen) are an example

• To visualize we rely on the Python Tutor
§ Website linked to from the course page
§ But use only that one! Other tutors are different.

9/26/19 Objects 10

Metaphor: Objects are Folders

>>> import introcs

>>> p = introcs.Point3(0,0,0)

>>> id(p)

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module
that has Point class.

Constructor is function.
Prefix w/ module name.

Unique tab
identifier

9/26/19 Objects 11

Shows the ID of p.

Metaphor: Objects are Folders

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

• Idea: Data too “big” for p
§ Split into many variables
§ Put the variables in folder
§ They are called attributes

• Folder has an identifier
§ Unique (like a netid)
§ Cannot ever change
§ Has no real meaning;

only identifies folder

Unique tab
identifier

Attribute
9/26/19 Objects 12

Object Variables

• Variable stores object name
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object name
§ Example: q = p
§ Takes name from p
§ Puts the name in q
§ Does not make new folder!

• This is the cause of many
mistakes for beginners

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

id2q

9/26/19 Objects 13

Objects and Attributes

• Attributes live inside objects
§ Can access these attributes
§ Can use them in expressions

• Access: <variable>.<attr>
§ Look like module variables
§ Recall: math.pi

• Example
>>> p = introcs.Point3(1,2,3)
>>> a = p.x + p.y

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

9/26/19 Objects 14

Objects and Attributes

• Attributes live inside objects
§ Can access these attributes
§ Can use them in expressions

• Access: <variable>.<attr>
§ Look like module variables
§ Recall: math.pi

• Example
>>> p = introcs.Point3(1,2,3)
>>> a = p.x + p.y

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

3.0a

9/26/19 Objects 15

Objects and Attributes

• Can also assign attributes
§ Reach into folder & change
§ Do without changing p

• <var>.<attr> = <exp>
§ Example: p.x = p.y+p.z
§ See this in visualizer

• This is very powerful
§ Another reason for objects
§ Why need visualization

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

5.0x

9/26/19 Objects 16

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = introcs.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

9/26/19 Objects 17

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = introcs.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

9/26/19 Objects 18

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

5.6

CORRECT

x

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = introcs.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

9/26/19 Objects 19

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

5.6 7.4

CORRECT

x x

Objects Allow for Mutable Functions

• Mutable function: alters the parameters
§ Often a procedure; no return value

• Until now, this was impossible
§ Function calls COPY values into new variables
§ New variables erased with call frame
§ Original (global?) variable was unaffected

• But object variables are folder names
§ Call frame refers to same folder as original
§ Function may modify the contents of this folder

9/26/19 Objects 20

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1

incr_x 2

id1q

Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2

9/26/19 Objects 21

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1

incr_x

id1q

Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2
1.0x

9/26/19 Objects 22

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1

Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2
1.0x

ERASE WHOLE FRAME

Change
remains

9/26/19 Objects 23

Methods: Functions Tied to Objects

• Have seen object folders contain variables
§ Syntax: ⟨obj⟩.⟨attribute⟩ (e.g. p.x)
§ These are called attributes

• They can also contain functions
§ Syntax: ⟨obj⟩.⟨method⟩(⟨arguments⟩)
§ Example: p.clamp(-1,1)
§ These are called methods

• Visualizer will not show these inside folders
§ Will see why in November (when cover Classes)

9/26/19 Objects 24

Understanding Method Calls

• Object before the name is an implicit argument
• Example: distance

>>> p = Point3(0,0,0) # First point
>>> q = Point3(1,0,0) # Second point
>>> r = Point3(0,0,1) # Third point
>>> p.distance(r) # Distance between p, r
1.0
>>> q.distance(r) # Distance between q, r
1.4142135623730951

9/26/19 Objects 25

Recall: String Method Calls

• Method calls have the form
string.name(x,y,…)

• The string in front is an additional argument
§ Just one that is not inside of the parentheses
§ Why? Will answer this later in course.

method
name

argumentsargument

Are strings objects?

9/26/19 Objects 26

Surprise: All Values are Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 1000
>>> id(x) 2.5x

2.5

id5

id5x

float

9/26/19 Objects 27

This Explains A Lot of Things

• Basic types act like classes
§ Conversion function is really a constructor
§ Remember constructor, type have same name

• Example:
>>> type(1)
<class 'int'>
>>> int('1')
1

• Design goals of Python 3
§ Wanted everything an object
§ Makes processing cleaner

• But makes learning harder
§ Objects are complex topic
§ Want to delay if possible

9/26/19 Objects 28

But Not Helpful to Think This Way

• Number folders are immutable
§ “Variables” have no names
§ No way to reach in folder
§ No way to change contents

>>> x = 1000
>>> y = 1000
>>> id(x)
4497040368
>>> id(y)
4497040400
>>> y = y+1
>>> id(y)
4497040432

1000

4497040368

4497040368x

int Makes a brand
new int folder

9/26/19 Objects 29

But Not Helpful to Think This Way

• Number folders are immutable
§ “Variables” have no names
§ No way to reach in folder
§ No way to change contents

• Remember purpose of folder
§ Show how objects can be altered
§ Show how variables “share” data
§ This cannot happen in basic types

• So just ignore the folders
§ (The are just metaphors anyway)

>>> x = 1000
>>> y = 1000
>>> id(x)
4497040368
>>> id(y)
4497040400
>>> y = y+1
>>> id(y)
4497040432

9/26/19 Objects 30

Basic Types vs. Classes

Basic Types

• Built-into Python
• Refer to instances as values
• Instantiate with literals
• Are all immutable
• Can ignore the folders

Classes

• Provided by modules
• Refer to instances as objects
• Instantiate w/ constructors
• Can alter attributes
• Must represent with folders

9/26/19 Objects 31

In doubt? Use the Python Tutor

Where To From Here?

• Right now, just try to understand objects
§ All Python programs use objects
§ The object classes are provided by Python

• OO Programming is about creating classes
§ But we will not get to this until after Prelim 1

• Similar to the separation of functions
§ First learned to call functions (create objects)
§ Then how to define functions (define classes)

9/26/19 Objects 32

