
Algorithm Design

Lecture 8

Announcements For This Lecture

Assignment 1
• Due TOMORROW

§ Due before midnight

§ Submit something…

§ Last revision Oct. 2

• Grades posted Friday

• Complete the Survey
§ Must answer individually

Getting Help
• Can work on it in lab

§ But still have a new lab
§ Make sure you do both

• Consulting Hours
§ But expect it to be busy
§ First-come, first-served

• One-on-Ones still going
§ Lots of spaces available

29/24/19 Algorithm Design

What Are Algorithms?

Algorithm

• Step-by-step instructions
§ Not specific to a language
§ Could be a cooking recipe

• Outline for a program

Implementation

• Program for an algorithm
§ In a specific language
§ What we often call coding

• The filled in outline

9/24/19 Algorithm Design 3

• Good programmers can separate the two
§ Work on the algorithm first
§ Implement in language second

• Why approach strings as search-cut-glue

Difficulties With Programming

Syntax Errors

• Python can’t understand you
• Examples:

§ Forgetting a colon
§ Not closing a parens

• Common with beginners
§ But can quickly train out

Conceptual Errors

• Does what you say, not mean
• Examples:

§ Forgot last char in slice
§ Used the wrong argument

• Happens to everyone
§ Large part of CS training

Proper algorithm design
reduces conceptual errors

9/24/19 Algorithm Design 4

Testing First Strategy

• Write the Tests First
Could be script or written by hand

• Take Small Steps
Do a little at a time; make use of placeholders

• Intersperse Programming and Testing
When you finish a step, test it immediately

• Separate Concerns
Do not move to a new step until current is done

9/24/19 Algorithm Design 5

Testing First Strategy

• Write the Tests First
Could be script or written by hand

• Take Small Steps
Do a little at a time; make use of placeholders

• Intersperse Programming and Testing
When you finish a step, test it immediately

• Separate Concerns
Do not move to a new step until current is done

Will see several strategies.

But all built on this core idea.

9/24/19 Algorithm Design 6

Using Placeholders in Design

• Strategy: fill in definition a little at a time
• We start with a function stub

§ Function that can be called but is unfinished
§ Allows us to test while still working (later)

• All stubs must have a function header
§ But the definition body might be “empty”
§ Certainly is when you get started

9/24/19 Algorithm Design 7

A Function Stub

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
Finish the body

“Empty”

9/24/19 Algorithm Design 8

But it Cannot Really Be Empty

def last_name_first(s):
Finish the body

• A function definition is only valid with a body
§ (Single-line) comments do not count as body
§ But doc-strings do count (part of help function)

• So you should always write in the specification

Error

9/24/19 Algorithm Design 9

An Alternative: Pass

def last_name_first(s):
pass

• You can make the body non-empty with pass
§ It is a command to “do nothing”
§ Only purpose is to ensure there is a body

• You would remove it once you got started

Fine!

9/24/19 Algorithm Design 10

Ideally: Use Both

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
pass

Now pass is a note that is unfinished.
Can leave it there until work is done.

9/24/19 Algorithm Design 11

Outlining Your Approach

• Recall the two types of errors you will have
§ Syntax Errors: Python can’t understand you
§ Conceptual Errors: Does what you say, not mean

• To remove conceptual errors, plan before code
§ Create outline of the steps to carry out
§ Write in this outline as comments

• This outline is called pseudocode
§ English statements of what to do
§ But corresponds to something simple in Python

9/24/19 Algorithm Design 12

Example: Reordering a String

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
Find the space between the two names
Cut out the first name
Cut out the last name
Glue them together with a comma

9/24/19 Algorithm Design 13

Example: Reordering a String

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
end_first = s.find(s,' ')
Cut out the first name
Cut out the last name
Glue them together with a comma

9/24/19 Algorithm Design 14

Example: Reordering a String

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
end_first = s.find(s,' ')
first_name = s[:end_first]
Cut out the last name
Glue them together with a comma

9/24/19 Algorithm Design 15

What is the Challenge?

• Pseudocode must correspond to Python
§ Preferably implementable in one line
§ Unhelpful: # Return the correct answer

• So what can we do?
§ Depends on the types involved
§ Different types have different operations
§ You should memorize important operations
§ Use these as building blocks

9/24/19 Algorithm Design 16

Case Study: Strings

• We can slice strings (s[a:b])
• We can glue together strings (+)
• We have a lot of string methods

§ We can search for characters
§ We can count the number of characters
§ We can pad strings
§ We can strip padding

• Sometimes, we can cast to a new type
9/24/19 Algorithm Design 17

Early Testing

• Recall: Combine programming & testing
§ After each step we should test
§ But it is unfinished; answer is incorrect!

• Goal: ensure intermediate results expected
§ Take an input from your testing plan
§ Call the function on that input
§ Look at the results at each step
§ Make sure they are what you expect

• Add a temporary return value
9/24/19 Algorithm Design 18

Stubbed Returns

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""
end_first = introcs.find_str(s,' ')
first = s[:end_first]
Cut out the last name
Glue them together with a comma
return first # Not the final answer

9/24/19 Algorithm Design 19

Working with Helpers

• Suppose you are unsure of a step
§ You maybe have an idea for pseudocode
§ But not sure if it easily converts to Python

• But you can specify what you want
§ Specification means a new function!
§ Create a specification stub for that function
§ Put a call to it in the original function

• Now can lazily implement that function
9/24/19 Algorithm Design 20

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form
'last-name, first-name'
Precondition: s is in the form
'first-name last-name' with
with one blank between names"""
Cut out the first name
Cut out the last name
Glue together with comma
Return the result

9/24/19 Algorithm Design 21

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form
'last-name, first-name'
Precondition: s is in the form
'first-name last-name' with
with one blank between names""”
first = first_name(s)
Cut out the last name
Glue together with comma
return first # Stub

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
'first-name last-name' with
one blank between names"""
pass

9/24/19 Algorithm Design 22

Example: last_name_first

def last_name_first(s):
"""Returns: copy of s in the form
'last-name, first-name'
Precondition: s is in the form
'first-name last-name' with
with one blank between names""”
first = first_name(s)
Cut out the last name
Glue together with comma
return first # Stub

def first_name(s):
"""Returns: first name in s
Precondition: s is in the form
'first-name last-name' with
one blank between names"""
end = s.find(' ')
return s[:end]

9/24/19 Algorithm Design 23

Concept of Top Down Design

• Function specification is given to you
§ This cannot change at all
§ Otherwise, you break the team

• But you break it up into little problems
§ Each naturally its own function
§ YOU design the specification for each
§ Implement and test each one

• Complete before the main function
9/24/19 Algorithm Design 24

Testing and Top Down Design

def test_first_name():
"""Test procedure for first_name(n)"""
result = name.first_name('Walker White')
introcs.assert_equals('Walker', result)

def test_last_name_first():
"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

9/24/19 Algorithm Design 25

A Word of Warning

• Do not go overboard with this technique
§ Do not want a lot of one line functions
§ Can make code harder to read in extreme

• Do it if the code is too long
§ I personally have a one page rule
§ If more than that, turn part into a function

• Do it if you are repeating yourself a lot
§ If you see the same code over and over
§ Replace that code with a single function call

9/24/19 Algorithm Design 26

Exercise: Anglicizing an Integer

• anglicize(1) is “one”
• anglicize(15) is “fifteen”
• anglicize(123) is “one hundred twenty three”
• anglicize(10570) is “ten thousand five hundred

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
pass # ???

9/24/19 Algorithm Design 27

Exercise: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
if < 1000, provide an answer

if > 1000, break into hundreds, thousands parts
use the < 1000 answer for each part , and glue
together with "thousands" in between

return the result

9/24/19 Algorithm Design 28

Exercise: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
if n < 1000: # no thousands place

return anglicize1000(n)
elif n % 1000 == 0: # no hundreds, only thousands

return anglicize1000(n/1000) + ' thousand'
else: # mix the two

return (anglicize1000(n/1000) + ' thousand '+
anglicize1000(n))

9/24/19 Algorithm Design 29

Exercise: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
if n < 1000: # no thousands place

return anglicize1000(n)
elif n % 1000 == 0: # no hundreds, only thousands

return anglicize1000(n/1000) + ' thousand'
else: # mix the two

return (anglicize1000(n/1000) + ' thousand '+
anglicize1000(n))

9/24/19 Algorithm Design 30

Now implement this.
See anglicize.py

