
Specifications & Testing

Lecture 6



Announcements For This Lecture

Last Call
• Acad. Integrity Quiz
• Take it by tomorrow
• Also remember survey

Assignment 1
• Posted on web page

§ Due Wed, Sep. 25th

§ Today’s lab will help
§ Revise until correct

• Can work in pairs
§ We will pair if needed
§ Submit request TONIGHT
§ One submission per pair

29/17/19 Specifications & Testing



One-on-One Sessions

• Started Sunday: 1/2-hour one-on-one sessions
§ To help prepare you for the assignment
§ Primarily for students with little experience

• There are still some spots available
§ Sign up for a slot in CMS

• Will keep running after September 25th
§ Will open additional slots after the due date
§ Will help students revise Assignment 1
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Recall: The Python API
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Function 
name

Possible arguments

What the function evaluates to
Module

• This is a specification
§ Enough info to call function
§ But not how to implement

• Write them as docstrings



Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter. 

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')
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One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0
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“Returns” indicates a
fruitful function

More detail about the 
function.  It may be 
many paragraphs.

Parameter description

Precondition specifies 
assumptions we make 
about the arguments



What Makes a Specification “Good”?

• Software development is a business
§ Not just about coding – business processes
§ Processes enable better code development

• Complex projects need multi-person teams
§ Lone programmers do simple contract work
§ Teams must have people working separately

• Processes are about how to break-up the work
§ What pieces to give each team member?
§ How can we fit these pieces back together?
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Functions as a Way to Separate Work

Function
Developer 1 Developer 2

Defines Calls
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Working on Complicated Software

Developer 1 Developer 2

Func 1 Func 2

Func 3

Func 3 Func 4

Func 5

Calls

Architect plans
the separation
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What Happens When Code Breaks?

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?
Who must fix it?
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Purpose of a Specification

• To clearly layout responsibility
§ What does the function promise to do?
§ What is the allowable use of the function?

• From this responsibility we determine
§ If definer implemented function properly
§ If caller uses the function in a way allowed

• A specification is a business contract 
§ Requires a formal documentation style
§ Rules for modifying contract beyond course scope
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Preconditions are a Promise

• If precondition true
§ Function must work

• If precondition false
§ Function might work
§ Function might not 

• Assigns responsibility
§ How to tell fault?

>>> to_centigrade(32.0)
0.0
>>> to_centigrade('32')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s) 
for -: 'str' and 'int'

Precondition violated
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Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition 
violated
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Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition
correctly met
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What if it Just Works?

• Violation != crash
§ Sometimes works anyway
§ Undocumented behavior

• But is bad practice
§ Definer may change the 

definition at any time
§ Can do anything so long 

as specification met
§ Caller code breaks

• Hits Microsoft devs a lot

>>> to_centigrade(32.0)
0.0
>>> to_centigrade(212)
100.0

Precondition violated

Precondition 
violations are 
unspecified!
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Testing Software

• You are responsible for your function definition
§ You must ensure it meets the specification
§ May even need to prove it to your boss

• Testing: Analyzing & running a program 
§ Part of, but not the same as, debugging
§ Finds bugs (errors), but does not remove them

• To test your function, you create a test plan
§ A test plan is made up of several test cases
§ Each is an input (argument), and its expected output
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Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

Brainstorm 
some test cases
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Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

Surprise! 
Bad Specification

rhythm?
crwth?
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Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is 
not at the start of the word.

Repeated vowels are counted separately.  Both upper case and   
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""



Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is 
not at the start of the word.

Repeated vowels are counted separately.  Both upper case and   
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

INPUT OUTPUT
'hat' 1
'aeiou' 5
'grrr' 0

Some Test Cases



Representative Tests

• We cannot test all possible inputs
§ “Infinite” possibilities (strings arbritrary length)
§ Even if finite, way too many to test

• Limit to tests that are representative
§ Each test is a significantly different input
§ Every possible input is similar to one chosen

• This is an art, not a science
§ If easy, no one would ever have bugs
§ Learn with much practice (and why teach early)
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Representative Tests

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Simplest 
case first!

A little 
complex

“Weird”
cases

9/17/19 Specifications & Testing 26



How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3
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number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know



How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3
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number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

• If in doubt, just add more tests
• You are never penalized for too many tests

CORRECT(ISH)



The Rule of Numbers

• When testing the numbers are 1, 2, and 0
• Number 1: The simplest test possible

§ If a complex test fails, what was the problem?
§ Example: Word with just one vowels

• Number 2: Add more than was expected
§ Example: Multiple vowels (all ways)

• Number 0: Make something missing
§ Example: Words with no vowels
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Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns a copy of n in the form 'last-name, first-name’

Precondition: n is in the form 'first-name last-name'
with one or more spaces between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last  = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White’) returns 'White, Walker'
§ last_name_first('Walker      White’) returns 'White, Walker'
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Precondition
forbids a 0th test 



Test Scripts: Automating Testing

• To test a function we have to do the following
§ Start the Python interactive shell
§ Import the module with the function
§ Call the function several times to see if it is okay

• But this is incredibly time consuming!
§ Have to quit Python if we change module
§ Have to retype everything each time

• What if we made a second Python file?
§ This file is a script to test the module
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Unit Test: An Automated Test Script

• A unit test is a script to test a single function
§ Imports the function module (so it can access it)
§ Imports the introcs module (for testing)
§ Implements one or more test cases

• A representative input
• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):
"""Quit program if expected and received differ"""
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Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

# Test one space between names
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

# Test multiple spaces between names
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')
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Actual Output
Input

Expected Output

Comment 
describing test



Testing last_name_first(n)
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Message will print 
out only if no errors.

Quits Python
if not equal



Testing Multiple Functions

• Unit test is for a single function
§ But you are often testing many functions
§ Do not want to write a test script for each

• Idea: Put test cases inside another procedure
§ Each function tested gets its own procedure
§ Procedure has test cases for that function
§ Also some print statements (to verify tests work)

• Turn tests on/off by calling the test procedure
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Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

# Execution of the testing code
test_last_name_first()
print('Module name passed all tests.')
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No tests happen 
if you forget this


