
Specifications & Testing

Lecture 6

Announcements For This Lecture

Last Call
• Acad. Integrity Quiz
• Take it by tomorrow
• Also remember survey

Assignment 1
• Posted on web page

§ Due Wed, Sep. 25th

§ Today’s lab will help
§ Revise until correct

• Can work in pairs
§ We will pair if needed
§ Submit request TONIGHT
§ One submission per pair

29/17/19 Specifications & Testing

One-on-One Sessions

• Started Sunday: 1/2-hour one-on-one sessions
§ To help prepare you for the assignment
§ Primarily for students with little experience

• There are still some spots available
§ Sign up for a slot in CMS

• Will keep running after September 25th
§ Will open additional slots after the due date
§ Will help students revise Assignment 1

9/17/19 Specifications & Testing 3

Recall: The Python API

9/17/19 Specifications & Testing 4

Function
name

Possible arguments

What the function evaluates to
Module

• This is a specification
§ Enough info to call function
§ But not how to implement

• Write them as docstrings

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

9/17/19 Specifications & Testing 5

One line description,
followed by blank line

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

9/17/19 Specifications & Testing 6

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

9/17/19 Specifications & Testing 7

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

9/17/19 Specifications & Testing 8

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

9/17/19 Specifications & Testing 9

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

9/17/19 Specifications & Testing 10

“Returns” indicates a
fruitful function

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

What Makes a Specification “Good”?

• Software development is a business
§ Not just about coding – business processes
§ Processes enable better code development

• Complex projects need multi-person teams
§ Lone programmers do simple contract work
§ Teams must have people working separately

• Processes are about how to break-up the work
§ What pieces to give each team member?
§ How can we fit these pieces back together?

9/17/19 Specifications & Testing 11

Functions as a Way to Separate Work

Function
Developer 1 Developer 2

Defines Calls

9/17/19 Specifications & Testing 12

Working on Complicated Software

Developer 1 Developer 2

Func 1 Func 2

Func 3

Func 3 Func 4

Func 5

Calls

Architect plans
the separation

9/17/19 Specifications & Testing 13

What Happens When Code Breaks?

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?
Who must fix it?

9/17/19 Specifications & Testing 14

Purpose of a Specification

• To clearly layout responsibility
§ What does the function promise to do?
§ What is the allowable use of the function?

• From this responsibility we determine
§ If definer implemented function properly
§ If caller uses the function in a way allowed

• A specification is a business contract
§ Requires a formal documentation style
§ Rules for modifying contract beyond course scope

9/17/19 Specifications & Testing 15

Preconditions are a Promise

• If precondition true
§ Function must work

• If precondition false
§ Function might work
§ Function might not

• Assigns responsibility
§ How to tell fault?

>>> to_centigrade(32.0)
0.0
>>> to_centigrade('32')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated

9/17/19 Specifications & Testing 16

Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition
violated

9/17/19 Specifications & Testing 17

Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition
correctly met

9/17/19 Specifications & Testing 18

What if it Just Works?

• Violation != crash
§ Sometimes works anyway
§ Undocumented behavior

• But is bad practice
§ Definer may change the

definition at any time
§ Can do anything so long

as specification met
§ Caller code breaks

• Hits Microsoft devs a lot

>>> to_centigrade(32.0)
0.0
>>> to_centigrade(212)
100.0

Precondition violated

Precondition
violations are
unspecified!

9/17/19 Specifications & Testing 19

Testing Software

• You are responsible for your function definition
§ You must ensure it meets the specification
§ May even need to prove it to your boss

• Testing: Analyzing & running a program
§ Part of, but not the same as, debugging
§ Finds bugs (errors), but does not remove them

• To test your function, you create a test plan
§ A test plan is made up of several test cases
§ Each is an input (argument), and its expected output

9/17/19 Specifications & Testing 20

Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

Brainstorm
some test cases

9/17/19 Specifications & Testing 21

Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

Surprise!
Bad Specification

rhythm?
crwth?

9/17/19 Specifications & Testing 22

Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

Test Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

INPUT OUTPUT
'hat' 1
'aeiou' 5
'grrr' 0

Some Test Cases

Representative Tests

• We cannot test all possible inputs
§ “Infinite” possibilities (strings arbritrary length)
§ Even if finite, way too many to test

• Limit to tests that are representative
§ Each test is a significantly different input
§ Every possible input is similar to one chosen

• This is an art, not a science
§ If easy, no one would ever have bugs
§ Learn with much practice (and why teach early)

9/17/19 Specifications & Testing 25

Representative Tests

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Simplest
case first!

A little
complex

“Weird”
cases

9/17/19 Specifications & Testing 26

How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3

9/17/19 Specifications & Testing 27

number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3

9/17/19 Specifications & Testing 28

number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

• If in doubt, just add more tests
• You are never penalized for too many tests

CORRECT(ISH)

The Rule of Numbers

• When testing the numbers are 1, 2, and 0
• Number 1: The simplest test possible

§ If a complex test fails, what was the problem?
§ Example: Word with just one vowels

• Number 2: Add more than was expected
§ Example: Multiple vowels (all ways)

• Number 0: Make something missing
§ Example: Words with no vowels

9/17/19 Specifications & Testing 29

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns a copy of n in the form 'last-name, first-name’

Precondition: n is in the form 'first-name last-name'
with one or more spaces between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White’) returns 'White, Walker'
§ last_name_first('Walker White’) returns 'White, Walker'

9/17/19 Specifications & Testing 30

Precondition
forbids a 0th test

Test Scripts: Automating Testing

• To test a function we have to do the following
§ Start the Python interactive shell
§ Import the module with the function
§ Call the function several times to see if it is okay

• But this is incredibly time consuming!
§ Have to quit Python if we change module
§ Have to retype everything each time

• What if we made a second Python file?
§ This file is a script to test the module

9/17/19 Specifications & Testing 31

Unit Test: An Automated Test Script

• A unit test is a script to test a single function
§ Imports the function module (so it can access it)
§ Imports the introcs module (for testing)
§ Implements one or more test cases

• A representative input
• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):
"""Quit program if expected and received differ"""

9/17/19 Specifications & Testing 32

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Test multiple spaces between names
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')
9/17/19 Specifications & Testing 33

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Test multiple spaces between names
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')
9/17/19 Specifications & Testing 34

Actual Output
Input

Expected Output

Comment
describing test

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Test multiple spaces between names
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')
9/17/19 Specifications & Testing 35

Message will print
out only if no errors.

Quits Python
if not equal

Testing Multiple Functions

• Unit test is for a single function
§ But you are often testing many functions
§ Do not want to write a test script for each

• Idea: Put test cases inside another procedure
§ Each function tested gets its own procedure
§ Procedure has test cases for that function
§ Also some print statements (to verify tests work)

• Turn tests on/off by calling the test procedure

9/17/19 Specifications & Testing 36

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name passed all tests.')

9/17/19 Specifications & Testing 37

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name passed all tests.')

9/17/19 Specifications & Testing 38

No tests happen
if you forget this

