
1

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

“Returns” indicates a
fruitful function

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

What Makes a Specification “Good”?

• Software development is a business
§ Not just about coding – business processes
§ Processes enable better code development

• Complex projects need multi-person teams
§ Lone programmers do simple contract work
§ Teams must have people working separately

• Processes are about how to break-up the work
§ What pieces to give each team member?
§ How can we fit these pieces back together?

Preconditions are a Promise

• If precondition true
§ Function must work

• If precondition false
§ Function might work
§ Function might not

• Assigns responsibility
§ How to tell fault?

>>> to_centigrade(32.0)
0.0
>>> to_centigrade('32')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated

Testing Software

• You are responsible for your function definition
§ You must ensure it meets the specification
§ May even need to prove it to your boss

• Testing: Analyzing & running a program
§ Part of, but not the same as, debugging
§ Finds bugs (errors), but does not remove them

• To test your function, you create a test plan
§ A test plan is made up of several test cases
§ Each is an input (argument), and its expected output

Representative Tests

• We cannot test all possible inputs
§ “Infinite” possibilities (strings arbritrary length)
§ Even if finite, way too many to test

• Limit to tests that are representative
§ Each test is a significantly different input
§ Every possible input is similar to one chosen

• This is an art, not a science
§ If easy, no one would ever have bugs
§ Learn with much practice (and why teach early)

2

Representative Tests

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Simplest
case first!

A little
complex

“Weird”
cases

The Rule of Numbers

• When testing the numbers are 1, 2, and 0
• Number 1: The simplest test possible

§ If a complex test fails, what was the problem?
§ Example: Word with just one vowels

• Number 2: Add more than was expected
§ Example: Multiple vowels (all ways)

• Number 0: Make something missing
§ Example: Words with no vowels

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns a copy of n in the form 'last-name, first-name’

Precondition: n is in the form 'first-name last-name'
with one or more spaces between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White’) returns 'White, Walker'
§ last_name_first('Walker White’) returns 'White, Walker'

Precondition
forbids a 0th test

Unit Test: An Automated Test Script

• A unit test is a script to test a single function
§ Imports the function module (so it can access it)
§ Imports the introcs module (for testing)
§ Implements one or more test cases

• A representative input
• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):
"""Quit program if expected and received differ"""

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

Test multiple spaces between names
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')

Actual Output
Input

Expected Output

Comment
describing test

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name passed all tests.')

No tests happen
if you forget this

