
Strings

Lecture 5

Announcements For This Lecture

Assignment 1
• Will post it on Sunday

§ Need one more lecture
§ But start reading it

• Due Wed Sep. 25th

§ Revise until correct
§ Final version Oct 2nd

• Do not put off until end!

Getting Help
• Can work in pairs

§ Will set up
§ Submit one for both

• Lots of consultant hours
§ Come early! Beat the rush
§ Also use TA office hours

• One-on-Ones next week

29/12/19 Strings

Announcements For This Lecture

Assignment 1
• Will post it on Sunday

§ Need one more lecture
§ But start reading it

• Due Wed Sep. 25th

§ Revise until correct
§ Final version Oct 2nd

• Do not put off until end!

Getting Help
• Can work in pairs

§ Will set up
§ Submit one for both

• Lots of consultant hours
§ Come early! Beat the rush
§ Also use TA office hours

• One-on-Ones next week

29/12/19 Strings

One-on-One Sessions

• Starting Monday: 1/2-hour one-on-one sessions
§ Bring computer to work with instructor, TA or consultant
§ Hands on, dedicated help with Lab 3 (or next lecture)
§ To prepare for assignment, not for help on assignment

• Limited availability: we cannot get to everyone
§ Students with experience or confidence should hold back

• Sign up online in CMS: first come, first served
§ Choose assignment One-on-One
§ Pick a time that works for you; will add slots as possible
§ Can sign up starting at 5pm TOMORROW

9/12/19 Strings 3

Purpose of Today’s Lecture

• Return to the string (str) type
§ Saw it the first day of class
§ Learn all of the things we can do with it

• See more examples of functions
§ Particularly functions with strings

• Learn the difference between…
§ Procedures and fruitful functions
§ print and return statements

9/12/19 Strings 4

String: Text as a Value

• String are quoted characters
§ 'abc d' (Python prefers)
§ "abc d" (most languages)

• How to write quotes in quotes?
§ Delineate with “other quote”
§ Example: "Don't" or '6" tall'
§ What if need both " and ' ?

• Solution: escape characters
§ Format: \ + letter
§ Special or invisible chars

9/12/19 Strings 5

Char Meaning
\' single quote

\" double quote

\n new line

\t tab

\\ backslash

>>> x = 'I said: "Don\'t"'
>>> print(x)
I said: "Don't"

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[3:6]?

9/12/19 Strings 6

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[3:6]?

9/12/19 Strings 7

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

CORRECT

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[:4]?

9/12/19 Strings 8

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'o all'
B: 'Hello'
C: 'Hell'
D: Error!
E: I do not know

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[:4]?

9/12/19 Strings 9

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'o all'
B: 'Hello'
C: 'Hell'
D: Error!
E: I do not know

CORRECT

Other Things We Can Do With Strings

• Operation in: s1 in s2

§ Tests if s1 “a part of” s2

§ Say s1 a substring of s2

§ Evaluates to a bool

• Examples:
§ s = 'abracadabra'
§ 'a' in s == True

§ 'cad' in s == True
§ 'foo' in s == False

• Function len: len(s)
§ Value is # of chars in s
§ Evaluates to an int

• Examples:
§ s = 'abracadabra’
§ len(s) == 11

§ len(s[1:5]) == 4
§ s[1:len(s)-1] == 'bracadabr'

9/12/19 Strings 10

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third

End of middle third

Get the text

Return the result
return result

9/12/19 Strings 11

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third

End of middle third

Get the text
result = text[start:end]
Return the result
return result

9/12/19 Strings 12

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third

End of middle third
end = 2*size//3
Get the text
result = text[start:end]
Return the result
return result

9/12/19 Strings 13

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third
start = size//3
End of middle third
end = 2*size//3
Get the text
result = text[start:end]
Return the result
return result

9/12/19 Strings 14

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text
size = len(text)
Start of middle third
start = size//3
End of middle third
end = 2*size//3
Get the text
result = text[start:end]
Return the result
return result

9/12/19 Strings 15

Defining a String Function

>>> middle('abc')
'b'
>>> middle('aabbcc')
'bb'
>>> middle('aaabbbccc')
'bbb'

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text
size = len(text)
Start of middle third
start = size//3
End of middle third
end = 2*size//3
Get the text
result = text[start:end]
Return the result
return result

9/12/19 Strings 16

Not All Functions Need a Return

def greet(n):
"""Prints a greeting to the name n

Parameter n: name to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

9/12/19 Strings 17

Displays these
strings on the screen

No assignments or return
The call frame is EMPTY

Note the difference

Procedures vs. Fruitful Functions

Procedures

• Functions that do something
• Call them as a statement
• Example: greet('Walker')

Fruitful Functions

• Functions that give a value
• Call them in an expression
• Example: x = round(2.56,1)

9/12/19 Strings 18

Historical Aside
• Historically “function” = “fruitful function”
• But now we use “function” to refer to both

Print vs. Return

Print

• Displays a value on screen
§ Used primarily for testing
§ Not useful for calculations

def print_plus(n):
print(n+1)

>>> x = print_plus(2)
3
>>>

Return

• Defines a function’s value
§ Important for calculations
§ But does not display anything

def return_plus(n):
return (n+1)

>>> x = return_plus(2)
>>>

9/12/19 Strings 19

Print vs. Return

Print

• Displays a value on screen
§ Used primarily for testing
§ Not useful for calculations

def print_plus(n):
print(n+1)

>>> x = print_plus(2)
3
>>>

Return

• Defines a function’s value
§ Important for calculations
§ But does not display anything

def return_plus(n):
return (n+1)

>>> x = return_plus(2)
>>>

9/12/19 Strings 20

x 3x

Nothing here!

Method Calls

• Methods calls are unique (right now) to strings
§ Like a function call with a “string in front”

• Method calls have the form
string.name(x,y,…)

• The string in front is an additional argument
§ Just one that is not inside of the parentheses
§ Why? Will answer this later in course.

method
name

argumentsargument

Example: upper()

• upper(): Return an upper case copy
>>> s = 'Hello World’
>>> s.upper()
'HELLO WORLD'
>>> s[1:5].upper() # Str before need not be a variable
'ELLO'
>>> 'abc'.upper() # Str before could be a literal
'ABC’

• Notice that only argument is string in front

9/12/19 Strings 22

Examples of String Methods

• s1.index(s2)
§ Returns position of the
first instance of s2 in s1

• s1.count(s2)
§ Returns number of times

s2 appears inside of s1

• s.strip()
§ Returns copy of s with no

white-space at ends

>>> s = 'abracadabra'
>>> s.index('a')
0
>>> s.index('rac')
2
>>> s.count('a')
5
>>> s.count('x')
0
>>> ' a b '.strip()
'a b'

9/12/19 Strings 23

Examples of String Methods

• s1.index(s2)
§ Returns position of the
first instance of s2 in s1

• s1.count(s2)
§ Returns number of times

s2 appears inside of s1

• s.strip()
§ Returns copy of s with no

white-space at ends

>>> s = 'abracadabra'
>>> s.index('a')
0
>>> s.index('rac')
2
>>> s.count('a')
5
>>> s.count('x')
0
>>> ' a b '.strip()
'a b'

9/12/19 Strings 24

See Lecture page for more

Working on Assignment 1

• You will be writing a lot of string functions
• You have three main tools at your disposal

§ Searching: The index method
§ Cutting: The slice operation [start:end]
§ Gluing: The + operator

• Can combine these in different ways
§ Cutting to pull out parts of a string
§ Gluing to put back together in new string

9/12/19 Strings 25

String Extraction Example

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

SEARCH for open parens
start = text.index('(')
CUT before paren
tail = text[start+1:]
SEARCH for close parens
end = tail.index(')')
CUT and return the result
return tail[:end]

>>> s = 'Prof (Walker) White'
>>> firstparens(s)
'Walker'
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

9/12/19 Strings 26

String Extraction Puzzle

def second(text):
"""Returns: second elt in text
The text is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C’) rets 'B'
Param text: a list of words"""

start = text.index(',') # SEARCH
tail = text[start+1:] # CUT
end = tail.index(',') # SEARCH
result = tail[:end] # CUT
return result

>>> second('cat, dog, mouse, lion')
'dog'
>>> second('apple, pear, banana')
'pear'

9/12/19 Strings 27

1
2
3
4
5

String Extraction Puzzle

def second(text):
"""Returns: second elt in text
The text is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C’) rets 'B'
Param text: a list of words"""

start = text.index(',') # SEARCH
tail = text[start+1:] # CUT
end = tail.index(',') # SEARCH
result = tail[:end] # CUT
return result

>>> second('cat, dog, mouse, lion')
'dog'
>>> second('apple, pear, banana')
'pear'

9/12/19 Strings 28

1
2
3
4
5

Where is the error?

A: Line 1
B: Line 2
C: Line 3
D: Line 4
E: There is no error

String Extraction Puzzle

def second(text):
"""Returns: second elt in text
The text is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C’) rets 'B'
Param text: a list of words"""

start = text.index(',') # SEARCH
tail = text[start+1:] # CUT
end = tail.index(',') # SEARCH
result = tail[:end] # CUT
return result

>>> second('cat, dog, mouse, lion')
'dog'
>>> second('apple, pear, banana')
'pear'

9/12/19 Strings 29

1
2
3
4
5

result = tail[:end].strip()

tail = text[start+2:]
OR

