Helping You Succeed in this Class

- Consultants. ACCEL Lab Green Room
- Daily office hours (see website) with consultants
- Very useful when working on assignments
- AEW Workshops. Additional discussion course
- Runs parallel to this class - completely optional
" See website; talk to advisors in Olin 167.
- Piazza. Online forum to ask and answer questions
- Go here first before sending question in e-mail
- Office Hours. Talk to the professor!
- Available in Bailey basement between lectures

Converting Values Between Types

- Basic form: type(expression)
- This is an expression
- Evaluates to value, converted to new type
- This is sometimes called casting
- Examples:
- float(2) evaluates to 2.0 (a float)
- int(2.6) evaluates to 2 (an int)
- Note information loss in $2^{\text {nd }}$ example

Operator Precedence

- What is the difference between these two?
- $2 *(1+3)$
add, then multiply
- $2 * 1+3$
multiply, then add
- Operations are performed in a set order
- Parentheses make the order explicit
- What happens when no parentheses?
- Operator Precedence: The fixed order Python processes operators in absence of parentheses

iClickers

- Have you registered your iclicker?
- If not, visit (now with no surcharge!)
- https://csll10.cs..orrnell.edu/py/clicker
- See the course web page for more:
- http://www.cs.cornell.edu/courses/cs1110/2019fa
- Click "Materials/Textbook"
- Look under "iClickers"

Converting Values Between Types

- Conversion is measured narrow to wide

$$
\text { bool } \Rightarrow \text { int } \Rightarrow \text { float }
$$

- Widening: Convert to a wider type
- Python does automatically
- Example: $1 / 2.0$ evaluates to 0.5
- Narrowing: Convert to a narrower type
- Python never does automatically
- Example: float(int(2.6)) evaluates to 2.0

Precedence of Python Operators

- Exponentiation: ${ }^{* *}$
- Unary operators: + -
- Binary arithmetic: * / \%
- Binary arithmetic: + -
- Comparisons: < > <= >=
- Equality relations: == !=
- Logical not
- Logical and
- Logical or
- Precedence goes downwards - Parentheses highest
- Logical ops lowest
- Same line = same precedence
- Read "ties" left to right
- Example: $1 / 2 * 3$ is $(1 / 2) * 3$
- Section 2.5 in your text
- See website for more info
- Was major portion of Lab 1

Variables

- A variable

- is a box (memory location)
- with a name
- and a value in the box
- Examples:

```
x 5 Variable x, with value 5 (of type int)
area 20.1 Variable area,w/value 20.1 (of type float)
```


Variables and Assignment Statements

- Variables are created by assignment statements

$$
\frac{x=\frac{\square}{5}}{\square} \text { the value } \quad x=5
$$

- This is a statement, not an expression
- Expression: Something Python turns into a value
- Statement: Command for Python to do something
- Difference is that has no value itself
- Example:

But can now use x
(NOTHING) as an expr

Dynamic Typing

- Python is a dynamically typed language
- Variables can hold values of any type
- Variables can hold different types at different times
- The following is acceptable in Python:
$\ggg x=1 \quad \leftarrow x$ contains an int value
$\ggg x=x / 2.0 \leqslant x$ now contains a float value
- Alternative is a statically typed language
- Each variable restricted to values of just one type
- This is true in Java, C, C++, etc.

Using Variables

- Variables can be used in expressions
- Evaluate to the value that is in the box
- Example: x $5 \quad 1+x$ evaluates to 6
- Variables can change values
- Example: x $\$ 1.5 \quad 1+x$ evaluates to 2.5
- Can even change the type of their value
- Different from other languages (e.g. Java)

Assignments May Contain Expressions

- Example: $\mathrm{x}=1+2$
- Left of equals must always be variable: $+2=8$
- Read assignment statements right-to-left!
- Evaluate the expression on the right
- Store the result in the variable on the left
- We can include variables in this expression
- Example: $\mathrm{x}=\mathrm{y}+2$
- Example: x = x+2

x	5

y 2

Dynamic Typing

- Often want to track the type in a variable
- What is the result of evaluating x / y ?
- Depends on whether x, y are int or float values
- Use expression type(<expression>) to get type
- type(2) evaluates to <type 'int'>
- type(x) evaluates to type of contents of x
- Can use in a boolean expression to test type
- type('abc') == str evaluates to True

