
10/20/19

1

Nested Lists

• Lists can hold any objects
• Lists are objects
• Therefore lists can hold other lists!

x = [1, [2, 1], [1, 4, [3, 1]], 5]
x[0] x[1][1] x[2][2][1]x[2][0]

x[1] x[2] x[2][2]a = [2, 1]
b = [3, 1]
c = [1, 4, b]
x = [1, a, c, 5]

1

How Multidimensional Lists are Stored

• b = [[9, 6, 4], [5, 7, 7]]

• b holds name of a one-dimensional list
§ Has len(b) elements
§ Its elements are (the names of) 1D lists

• b[i] holds the name of a one-dimensional list (of ints)
§ Has len(b[i]) elements

id2

9
6
4

id3

5
7
7

id1

id2
id3

id1b

9 6 4
5 7 7

2

Representing Tables as Lists

Spreadsheet • Represent as 2d list
§ Each table row a list
§ List of all rows
§ Row major order

• Column major exists
§ Less common to see
§ Limited to some

scientific applications

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

0 1 2 3

0

1

4

2

3

d = [[5,4,7,3],[4,8,9,7],[5,1,2,3],[4,1,2,9],[6,7,8,0]]

Each row,
col has a

value

3

Overview of Two-Dimensional Lists

• Access value at row 3, col 2:

d[3][2]

• Assign value at row 3, col 2:

d[3][2] = 8

• An odd symmetry

§ Number of rows of d: len(d)

§ Number of cols in row r of d: len(d[r])

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0
1

4

2

3

4

Slices and Multidimensional Lists

• Only “top-level” list is copied.
• Contents of the list are not altered
• b = [[9, 6], [4, 5], [7, 7]]

id2

9
6

id1

id2
id3

id1b

id4

id3

4
5id4

7
7

x = b[:2]

id5x

id5

id2
id3

5

Functions on Nested Lists

def all_nums(table):
"""Returns True if table contains only numbers

Precondition: table is a (non-ragged) 2d List"""
result = True
Walk through table
for row in table:

Walk through the row
for item in row:

if not type(item) in [int,float]:
result = False

return result

Accumulator

First Loop

Second Loop

6

10/20/19

2

Transpose: A Trickier Example

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numrows = len(table) # Need number of rows
numcols = len(table[0]) # All rows have same no. cols
result = [] # Result (new table) accumulator
for m in range(numcols):

row = [] # Single row accumulator
for n in range(numrows):

row.append(table[n][m]) # Create a new row list
result.append(row) # Add result to table

return result

1 2

3 4

5 6

1 3 5

2 4 6

Accumulator
for each loop
Accumulator
for each loop

7

Key-Value Pairs

• The last built-in type: dictionary (or dict)
§ One of the most important in all of Python
§ Like a list, but built of key-value pairs

• Keys: Unique identifiers
§ Think social security number
§ At Cornell we have netids: jrs1

• Values: Non-unique Python values
§ John Smith (class ’13) is jrs1
§ John Smith (class ’16) is jrs2

Idea: Lookup
values by keys

8

Basic Syntax

• Create with format: {k1:v1, k2:v2, …}
§ Both keys and values must exist
§ Ex: d={‘jrs1':'John',’jrs2':'John','wmw2':'Walker'}

• Keys must be non-mutable
§ ints, floats, bools, strings, tuples
§ Not lists or custom objects
§ Changing a key’s contents hurts lookup

• Values can be anything

9

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['jrs1'] evals to 'John’
§ d['jrs2'] does too
§ d['wmw2'] evals to 'Walker'
§ d['abc1'] is an error

• Can test if a key exists
§ 'jrs1’ in d evals to True
§ 'abc1' in d evals to False

• But cannot slice ranges!

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

'wmw2'

id8

'John'

'John'

'Walker'

dict

'jrs2'

'jrs1'

Key-Value order in
folder is not important

id8d

10

Dictionaries Can be Modified

• Can reassign values
§ d['jrs1'] = 'Jane’
§ Very similar to lists

• Can add new keys
§ d[‘aaa1'] = 'Allen’
§ Do not think of order

• Can delete keys
§ del d['wmw2’]
§ Deletes both key, value

d = {'jrs1':'John','jrs2':'John',
'wmw2':'Walker'}

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'jrs2'

'jrs1'

'aaa1' 'Allen'

✗ ✗

id8d

11

Dictionary Loop with Accumulator

def max_grade(grades):
"""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values"""
maximum = 0 # Accumulator
Loop over keys
for k in grades:

if grades[k] > maximum:
maximum = grades[k]

return maximum

12

