A Mathematical Example: Factorial

- Non-recursive definition:
$\mathrm{n}!=\mathrm{n} \times \mathrm{n}-1 \times \ldots \times 2 \times 1$
$=n(n-1 \times \ldots \times 2 \times 1)$
- Recursive definition:
$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)!$ for $\mathrm{n} \geq 0$
Recursive case
$0!=1$
Base case
What happens if there is no base case?

1

Example: Fibonnaci Sequence

- Sequence of numbers: $1,1,2,3,5,8,13, \ldots$
$\begin{array}{lllllll}a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}\end{array}$
- Get the next number by adding previous two
- What is a_{8} ?
- Recursive definition:
- $a_{n}=a_{n-1}+a_{n-2} \quad$ Recursive Case
- $a_{0}=1 \quad$ Base Case
- $a_{1}=1 \quad$ (another) Base Case

Why did we need two base cases this time?

3

Fibonacci: \# of Frames vs. \# of Calls

5

2

Fibonacci as a Recursive Function

4

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

6

7

Divide and Conquer Example


```
    # 3. Combine the result
    return left+right
\(0+2\)
```


Three Steps for Divide and Conquer

1. Decide what to do on "small" data

- Some data cannot be broken up
- Have to compute this answer directly

2. Decide how to break up your data

- Both "halves" should be smaller than whole
- Often no wrong way to do this (next lecture)

3. Decide how to combine your answers

- Assume the smaller answers are correct
- Combining them should give bigger answer

8

Exercise: Remove Blanks from a String
def deblank(s):
"""Returns: s w/o blanks"""

$$
\text { if } \mathrm{s}==\text { ": }
$$

return s
elif len(s) $=1$: return " if $\mathrm{s}[0]==$ ' else s
left $=\operatorname{deblank}(\mathrm{s}[0])$
right $=\operatorname{deblank}(\mathrm{s}[1:])$

return left+right
\mathcal{Z} Combine answers

10

12

