
Asserts and
Error Handling

Lecture 11

Announcements for Today

Reading

• Reread Chapter 3
• 10.0-10.2, 10.4-10.6 for Tue

Assignments

• Finishing Assignment 1
§ We are going to score it
§ Get one more chance Sun.

• Assignment 2 in progress
§ Will grade it by Friday
§ Solutions posted by Friday

• Assignment 3 due next week
§ Before you leave for break
§ Same “length” as A1

10/3/19 Asserts & Error Handling 2

• Prelim, Oct 17th 7:30-9:00
§ Material up October 8th
§ Study guide next week

• Conflict with Prelim time?
§ Submit to Prelim 1 Conflict

assignment on CMS
§ Do not submit if no conflict

Using Color Objects in A3

• New classes in introcs
§ RGB, CMYK, and HSV

• Each has its own attributes
§ RGB: red, blue, green
§ CMYK: cyan, magenta,

yellow, black
§ HSV: hue, saturation, value

• Attributes have invariants
§ Limits the attribute values
§ Example: red is int in 0..255
§ Get an error if you violate

>>> import introcs
>>> c = introcs.RGB(128,0,0)
>>> r = c.red
>>> c.red = 500 # out of range
AssertionError: 500 outside [0,255]

10/3/19 Asserts & Error Handling 3

id1c

128r

id1

red 128

green 0

blue 0

RGB

>>> import introcs
>>> c = introcs.RGB(128,0,0)
>>> r = c.red
>>> c.red = 500 # out of range
AssertionError: 500 outside [0,255]

Using Color Objects in A3

• New classes in introcs
§ RGB, CMYK, and HSV

• Each has its own attributes
§ RGB: red, blue, green
§ CMYK: cyan, magenta,

yellow, black
§ HSV: hue, saturation, value

• Attributes have invariants
§ Limits the attribute values
§ Example: red is int in 0..255
§ Get an error if you violate

10/3/19 Asserts & Error Handling 4

id1c

128r

id1

red 128

green 0

blue 0

RGB

Constructor function.
To make a new color.

Accessing
Attribute

Recall: The Call Stack

• Functions are stacked
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)

• Stack represents memory
as a high water mark
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

10/3/19 Asserts & Error Handling 5

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6Frame 5

calls

calls

calls

calls

Error Messages

Not An Error Message

ZeroDivisionError: division by zero

An Error Message

Traceback (most recent call last):
File "error.py", line 41, in <module>
print(function_1(1,0))

File "error.py", line 16, in function_1
return function_2(x,y)

File "error.py", line 26, in function_2
return function_3(x,y)

File "error.py", line 36, in function_3
return x/y

ZeroDivisionError: division by zero

Everything starting
with the Traceback

10/3/19 Asserts & Error Handling 6

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print(function_1(1,0))

10/3/19 Asserts & Error Handling 7

calls

calls

calls

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print(function_1(1,0))

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print(function_1(1,0))

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

10/3/19 Asserts & Error Handling 8

Make sure you can see
line numbers in Atom.

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print function_1(1,0)

10/3/19 Asserts & Error Handling 9

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print(function_1(1,0))

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

Make sure you can see
line numbers in Atom.

Where error occurred
(or where was found)

Script code.
Global space

Recall: Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?
Who must fix it?

10/3/19 Asserts & Error Handling 10

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbers"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zeroWhere is the error?

10/3/19 Asserts & Error Handling 11

Approaching the Error Message

• Start from the top
• Look at function call

§ Examine arguments
§ (Print if you have to)
§ Verify preconditions

• Violation? Error found
§ Else go to next call
§ Continue until bottom

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

10/3/19 Asserts & Error Handling 12

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbers"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zeroWhere is the error?

A

B

C

10/3/19 Asserts & Error Handling 13

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbers"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Error!

10/3/19 Asserts & Error Handling 14

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbs, y > 0"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zeroWhere is the error?

A

B

C

10/3/19 Asserts & Error Handling 15

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbs, y > 0"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Error!

10/3/19 Asserts & Error Handling 16

Determining Responsibility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbs, y > 0"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbs, y > 0"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Error!

10/3/19 Asserts & Error Handling 17

Aiding the Search Process

• Responsibility is “outside of Python”
§ Have to step through the error message
§ Compare to specification at each step

• How can we make this easier?
§ What if we could control the error messages?
§ Write responsibility directly into error?
§ Then only need to look at error message

• We do this with assert statements
10/3/19 Asserts & Error Handling 18

Assert Statements

• Form 1: assert <boolean>
§ Does nothing if boolean is True
§ Creates an error is boolean is False

• Form 2: assert <boolean>, <string>
§ Very much like form 2
§ But error message includes the string

• Statement to verify a fact is true
§ Similar to assert_equals used in unit tests
§ But more versatile with complete stack trace

10/3/19 Asserts & Error Handling 19

Why Do This?

• Enforce preconditions!
§ Put precondition as assert.
§ If violate precondition,

the program crashes
• Provided code in A3

uses asserts heavily
§ First slide of lecture!

def exchange(from_c, to_c, amt)
"""Returns: amt from exchange

Precondition: amt a float…"""
assert type(amt) == float
…

10/3/19 Asserts & Error Handling 20

assert <boolean> # Creates error if <boolean> false
assert <boolean>, <string> # As above, but displays <String>

Will do yourself in A4.

Example: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, repr(n)+' is not an int'
assert 0 < n and n < 1000000, repr(n)+' is out of range'
Implement method here…

10/3/19 Asserts & Error Handling 21

Example: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, repr(n)+' is not an int'
assert 0 < n and n < 1000000, repr(n)+' is out of range'
Implement method here…

10/3/19 Asserts & Error Handling 22

Check (part of)
the precondition

Error message
when violated

Aside: Using repr Instead of str

>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

• Looking at this output, what is the type of var?

10/3/19 Asserts & Error Handling 23

A: int
B: float
C: str
D: Impossible to tell

Aside: Using repr Instead of str

>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

• Looking at this output, what is the type of var?

10/3/19 Asserts & Error Handling 24

A: int
B: float
C: str
D: Impossible to tell CORRECT

Aside: Using repr Instead of str

>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

>>> msg = repr(var)+' is invalid'
>>> print(msg)
'2' is invalid

10/3/19 Asserts & Error Handling 25

Clear that var
is really a string

Enforcing Preconditions is Tricky!

def lookup_netid(nid):
"""Returns: name of student with netid nid.

Precondition: nid is a string, which consists of
2 or 3 letters and a number"""
assert ?????

10/3/19 Asserts & Error Handling 26

Assert use expressions only.
Cannot use if-statements.

Each one must fit on one line.

Sometimes we will
only enforce part of

the precondition

Enforcing Preconditions is Tricky!

def lookup_netid(nid):
"""Returns: name of student with netid nid.

Precondition: nid is a string, which consists of
2 or 3 letters and a number"""
assert type(nid) == str, repr(nid) + ' is not a string'
assert nid.isalnum(), nid+' is not just letters/digits'

10/3/19 Asserts & Error Handling 27

Returns True if s contains
only letters, numbers.

Does this catch
all violations?

Using Functions to Enforce Preconditions

def exchange(curr_from, curr_to, amt_from):
"""Returns: amount of curr_to received.
Precondition: curr_from is a valid currency code
Precondition: curr_to is a valid currency code
Precondition: amt_from is a float"""

assert ??????, repr(curr_from) + ' not valid'
assert ??????, repr(curr_from) + ' not valid'
assert type(amt_from)==float, repr(amt_from)+' not a float'

10/3/19 Asserts & Error Handling 28

Using Functions to Enforce Preconditions

def exchange(curr_from, curr_to, amt_from):
"""Returns: amount of curr_to received.
Precondition: curr_from is a valid currency code
Precondition: curr_to is a valid currency code
Precondition: amt_from is a float"""

assert iscurrency(curr_from), repr(curr_from) + ' not valid'
assert iscurrency(curr_to), repr(curr_to) + ' not valid'
assert type(amt_from)==float, repr(amt_from)+' not a float'

10/3/19 Asserts & Error Handling 29

Recovering from Errors

• Suppose we have this code:
result = input('Number: ') # get number from user
x = float(result) # convert string to float
print('The next number is '+str(x+1))

• What if user mistypes?
Number: 12a
Traceback (most recent call last):
File "prompt.py", line 13, in <module>
x = float(result)

ValueError: could not convert string to float: '12a'
10/3/19 Asserts & Error Handling 30

Ideally Would Handle with Conditional

result = input('Number: ') # get number from user
if isfloat(result):

x = float(result) # convert to float
print('The next number is '+str(x+1))

else:
print('That is not a number!')

Does not Exist

10/3/19 Asserts & Error Handling 31

Using Try-Except

try:
result = input('Number: ') # get number
x = float(result) # convert to float
print('The next number is '+str(x+1))

except:
print('That is not a number!')

Similar to if-else
§ But always does the try block
§ Might not do all of the try block

10/3/19 Asserts & Error Handling 32

Using Try-Except

try:
result = input('Number: ') # get number
x = float(result) # convert to float
print('The next number is '+str(x+1))

except:
print('That is not a number!')

Similar to if-else
§ But always does the try block
§ Might not do all of the try block

10/3/19 Asserts & Error Handling 33

Conversion
may crash!

Execute if crashes

Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string
s represents a float"""
try:

x = float(s)
return True

except:
return False

10/3/19 Asserts & Error Handling 34

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error

10/3/19 Asserts & Error Handling 35

function_1

function_2

function_3
pops

pops
line in a try

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error
• Example:

>>> print function_1(1,0)
inf
>>>

10/3/19 Asserts & Error Handling 36

No traceback!

How to return
∞ as a float.

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

10/3/19 Asserts & Error Handling 37

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

10/3/19 Asserts & Error Handling 38

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

10/3/19 Asserts & Error Handling 39

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

10/3/19 Asserts & Error Handling 40

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

