
Lecture 24:
Loop Invariants

[Online Reading]

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2018sp

http://www.cs.cornell.edu/courses/cs1110/2018sp/materials/loop_invariants.pdf
http://www.cs.cornell.edu/courses/cs1110/2018sp

Announcements

• Lab 14 (there is no Lab 13) goes out next week
and is the last lab

• A5 out by early next week. This is the last
assignment.

• Prelim 2 grading will happen over the weekend.
• Do the Loop Invariant Reading before the Lab

2

Recall: Important Terminology

• assertion: true-false statement placed in a program to
assert that it is true at that point
§ Can either be a comment, or an assert command

• invariant: assertion supposed to always be true
§ If temporarily invalidated, must make it true again
§ Example: class invariants and class methods

• loop invariant: assertion supposed to be true before
and after each iteration of the loop

• iteration of a loop: one execution of its body
3

Recall: The while-loop

while <condition>:
statement 1
…
statement n

4

condition
true

false

bodybody

precondition

postcondition

• Precondition: assertion placed before a segment
• Postcondition: assertion placed after a segment

4 Tasks in this Lecture

1. Setting the table for more people
§ Building intuitions about invariants

2. Summing the Squares
§ Designing your invariants

3. Count num adjacent equal pairs
§ How invariants help you solve a problem!

4. Find largest element in a list
§ How you need to be careful during initialization

5

Task 1: Setting the table for more people

k = 0
while k < n_more_guests:

body goes here
…
k = k + 1

6

precondition: n_forks are needed @ table

postcondition: n_forks are needed @ table

• Precondition: before we start, we should have
2 forks for each guest (dinner fork & salad fork)

• Postcondition: after we finish, we should still have
2 forks for each guest

Relationship Between Two
If precondition is true, then
postcondition will be true

Q: Completing the Loop Body

k = 0
while k < n_more_guests:

k = k + 1
What statement do you put here to
make the postcondition true?

A: n_forks +=2
B: n_forks += 1
C: n_forks = k
D: None of the above
E: I don’t know 7

postcondition: n_forks are needed @ table

precondition: n_forks are needed @ table

A: Completing the Loop Body

k = 0
while k < n_more_guests:

k = k + 1

A: n_forks +=2
B: n_forks += 1
C: n_forks = k
D: None of the above
E: I don’t know 8

postcondition: n_forks are needed @ table

CORRECT

precondition: n_forks are needed @ table

What statement do you put here to
make the postcondition true?

Invariants: Assertions That Do Not Change

k = 0
#INV: n_forks = num forks needed with k more guests
while k < n_more_guests:

n_forks += 2
k += 1

invariant holds before loop

Loop Invariant: an assertion that is true before and after
each iteration (execution of body)

9

invariant still holds here

postcondition: n_forks are needed @ table

precondition: n_forks are needed @ table

What’s a Helpful Invariant?
Loop Invariant: an assertion that is true before and after
each iteration (execution of body)
• Documents the semantic meaning of your variables and

their relationship (if any)
• Should help you understand the loop
Bad:

n_forks >= 0
Good:

n_forks == num forks needed with k more guests

10

True, but doesn’t help you
understand the loop

Useful in order to conclude that you’re
adding guests to the table correctly

Task 2: Summing the Squares

total = 0
k = 2
while k <= 5:

total = total + k*k
k = k +1

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

Loop processes range 2..5

invariant goes here

Task: sum the squares of k from k = 2..5

11

POST: total is sum of 2…5

What is the invariant?

total = 0;
k = 2
while k <= 5:

total = total + k*k
k = k +1

Task: sum the squares of k from k = 2..5
What is true at the end of each loop iteration?

12

POST: total is sum of 2…5
What is true here?

total should have added in the square of (k-1)

total = sum of squares of 2..k-1

Summing Squares: Invariant Check #1

total = 0
k = 2

INV: total = sum of squares of 2..k-1
while k <= 5:

total = total + k*k
k = k +1

POST: total = sum of squares of 2..5

total 0

k 2

Integers that have
been processed:

Range 2..k-1: 132..1 (empty)

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

invariant goes here

none

before any iteration:

0

Summing Squares: Invariant Check #2
0

2

4

3

✗total

k

total = 0
k = 2

INV: total = sum of squares of 2..k-1
while k <= 5:

total = total + k*k
k = k +1

POST: total = sum of squares of 2..5

Integers that have
been processed:

Range 2..k-1:

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

invariant goes here

✗

2..2
2

14

after 1 iteration:

1

total = 0
k = 2

INV: total = sum of squares of 2..k-1
while k <= 5:

total = total + k*k
k = k +1

POST: total = sum of squares of 2..5

Summing Squares: Invariant Check #3
0 4 13✗✗total

Integers that have
been processed:

Range 2..k-1:

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

invariant goes here

2 3k ✗ 4✗

2..3
2, 3

15

after 2 iterations:

2

Summing Squares: Invariant Check #4
0 4 13 29✗✗ ✗total total = 0

k = 2
INV: total = sum of squares of 2..k-1
while k <= 5:

total = total + k*k
k = k +1

POST: total = sum of squares of 2..5

Integers that have
been processed:

Range 2..k-1:

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

invariant goes here

2 3k ✗ 4✗ 5✗

2..4
2, 3, 4

16

after 3 iterations:

3

Summing Squares: Invariant Check #5
0 4 13 29 54✗✗ ✗ ✗total total = 0

k = 2
INV: total = sum of squares of 2..k-1
while k <= 5:

total = total + k*k
k = k +1

POST: total = sum of squares of 2..5

Integers that have
been processed:

Range 2..k-1:

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

invariant goes here

2 3k ✗ 4✗ 5✗ 6✗

2..5
2, 3, 4, 5

17

after 4 iterations:

4

True Invariants à True Postcondition
0 4 13 29 54

Invariant was always true just
before test of loop condition.
So it’s true when loop terminates.

✗✗ ✗ ✗total total = 0
k = 2

INV: total = sum of squares of 2..k-1
while k <= 5:

total = total + k*k
k = k +1

POST: total = sum of squares of 2..5

k = 2

k <= 5

k = k +1

True

False

total = total + k*k

invariant goes here

2 3k ✗ 4✗ 5✗ 6✗

18

Designing Integer while-loops
1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the body (aka repetend) (# Process k)

Process b..c
Initialize variables (if necessary) to make invariant true
Invariant: range b..k-1 has been processed
while k <= c:

Process k
k = k + 1

Postcondition: range b..c has been processed 19

Task 3: count num adjacent equal pairs
1. Recognize that a range of integers b..c has to be processed

Approach:
Will need to look at characters 0…len(s)-1
Will need to compare 2 adjacent characters in s.
Beyond that… not sure yet!

20

s = 'ebeee’, n_pair = 2

s = ‘xxxxbee’, n_pair = 4

Task 3: count num adjacent equal pairs
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop (see postcondition)

set n_pair to number of adjacent equal pairs in s

while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 21

we’re deciding k is the second in the current pair
otherwise, we’d set the condition to k < len(s) -1

Q: What range of s has been processed?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop

set n_pair to number of adjacent equal pairs in s

while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 22

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

k: next integer to process.
What range of s has been processed?

A: What range of s has been processed?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop

set n_pair to number of adjacent equal pairs in s

while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 23

k: next integer to process.
What range of s has been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

CORRECT

Q: What is the loop invariant?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant

set n_pair to number of adjacent equal pairs in s

INVARIANT:
while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 24

A: n_pair = num adj. equal pairs in s[1..k]
B: n_pair = num adj. equal pairs in s[0..k]
C: n_pair = num adj. equal pairs in s[1..k–1]
D: n_pair = num adj. equal pairs in s[0..k–1]
E: I don’t know

A: What is the loop invariant?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant

set n_pair to number of adjacent equal pairs in s

INVARIANT:
while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 25

A: n_pair = num adj. equal pairs in s[1..k]
B: n_pair = num adj. equal pairs in s[0..k]
C: n_pair = num adj. equal pairs in s[1..k–1]
D: n_pair = num adj. equal pairs in s[0..k–1]
E: I don’t know

CORRECT

Q: how to initialize k?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = ?
INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 26

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: how to initialize k?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = ?
INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 27

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

CORRECT

Q: What do we compare to “process k”?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the body (aka repetend) (# Process k)

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = 1
INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 28

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n] E: I don’t know

A: What do we compare to “process k”?
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the body (aka repetend) (# Process k)

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = 1
INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 29

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n] E: I don’t know

CORRECT

Task 3: count num adjacent equal pairs
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the body (aka repetend) (# Process k)

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = 1
INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):

if (s[k-1] == s[k]):
n_pair += 1

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1] 30

count num adjacent equal pairs: v1

set n_pair to # adjacent equal pairs in s

n_pair = 0
k = 1
INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):

if (s[k-1] == s[k]):
n_pair += 1

k = k + 1
31postcondition: n_pair = # adjacent equal pairs in s[0..len(s)-1]

precondition: s is a string

Approach #1: compare s[k] to the character in front of it (s[k-1])

kk-1

count num adjacent equal pairs: v2

set n_pair to # adjacent equal pairs in s

n_pair = 0
k = 0
INV: n_pair = # adjacent equal pairs in s[0..k]
while k < len(s) —1:

if (s[k] == s[k+1]):
n_pair += 1

k = k + 1
32postcondition: n_pair = # adjacent equal pairs in s[0..len(s)-1]

precondition: s is a string

Approach #2: compare s[k] to the character in after it (s[k+1])

k+1k

Task 4: find largest element in list
1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the body (aka repetend) (# Process k)

set big to largest element in int_list, a list of int, len(int_list) >= 1
Initialize variables (if necessary) to make invariant true
Invariant: big is largest int in int_list[0…k-1]
while k < len(int_list):

Process k
k = k + 1

Postcondition: big = largest int in int_list[0..len(int_list)–1] 33

Q: What is the initialization? (careful!)
1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization

set big to largest element in int_list, a list of int, len(int_list) >= 1

Invariant: big is largest int in int_list[0…k-1]
while k < len(int_list):

k = k + 1
Postcondition: big = largest int in int_list[0..len(int_list)–1] 34

A: k = 0; big = int_list[0]
B: k = 1; big = int_list[0]
C: k = 1; big = int_list[1]
D: k = 0; big = int_list[1]
E: None of the above

A: What is the initialization? (careful!)
1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization

set big to largest element in int_list, a list of int, len(int_list) >= 1

Invariant: big is largest int in int_list[0…k-1]
while k < len(int_list):

k = k + 1
Postcondition: big = largest int in int_list[0..len(int_list)–1] 35

A: k = 0; big = int_list[0]
B: k = 1; big = int_list[0]
C: k = 1; big = int_list[1]
D: k = 0; big = int_list[1]
E: None of the above

An empty set of characters or integers has no maximum.

Be sure that 0..k–1 is not empty. You must start with k = 1.

Task 4: find largest element in list
1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the body (aka repetend) (# Process k)

set big to largest element in int_list, a list of int, len(int_list) >= 1
k = 1; big = int_list[0]
Invariant: big is largest int in int_list[0…k-1]
while k < len(int_list):

big = max(big, int_list[k])
k = k + 1

Postcondition: big = largest int in int_list[0..len(int_list)–1] 36

