http://www.cs.cornell.edu/courses/cs1110/2018sp

Lecture 24: Loop Invariants [Online Reading]

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

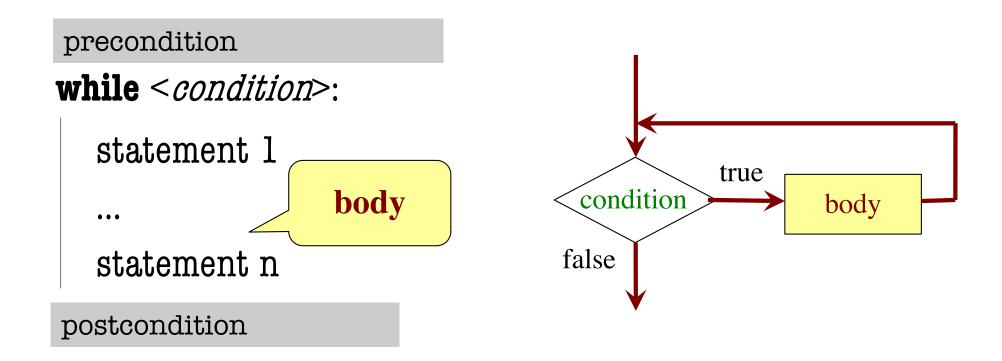
Announcements

- Lab 14 (there is no Lab 13) goes out next week and is the last lab
- A5 out by early next week. This is the last assignment.
- Prelim 2 grading will happen over the weekend.
- Do the Loop Invariant Reading before the Lab

Recall: Important Terminology

- **assertion**: true-false statement placed in a program to *assert* that it is true at that point
 - Can either be a **comment**, or an **assert** command
- invariant: assertion supposed to always be true
 - If temporarily invalidated, must make it true again
 - **Example**: class invariants and class methods
- **loop invariant**: assertion supposed to be true before and after each iteration of the loop
- iteration of a loop: one execution of its body

Recall: The while-loop



- **Precondition:** assertion placed before a segment
- **Postcondition:** assertion placed after a segment

4 Tasks in this Lecture

- 1. <u>Setting the table for more people</u>
 - Building intuitions about invariants
- 2. <u>Summing the Squares</u>
 - Designing your invariants
- 3. Count num adjacent equal pairs
 - How invariants help you solve a problem!
- 4. Find largest element in a list
 - How you need to be careful during initialization

Task 1: Setting the table for more people

precondition: n_forks are needed @ table

 $\mathbf{k} = \mathbf{0}$

...

```
while k < n_more_guests:
```

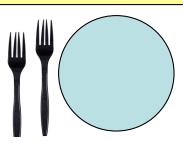
```
# body goes here
```

k = k + 1

Relationship Between Two

If precondition is true, then postcondition will be true

postcondition: n_forks are needed @ table



- Precondition: before we start, we should have
 2 forks for each guest (dinner fork & salad fork)
- **Postcondition:** after we finish, we should still have *2 forks for each guest*

Q: Completing the Loop Body

precondition: n_forks are needed @ table

k = 0 while k < n_more_guests:

What statement do you put here to make the postcondition true?

postcondition: n_forks are needed @ table

A: n_forks +=2 B: n_forks += 1 C: n_forks = k D: None of the above E: I don't know

k = k + 1

A: Completing the Loop Body

precondition: n_forks are needed @ table

k = 0while $k < n_more_guests:$ k = k + 1

What statement do you put here to make the postcondition true?

postcondition: n_forks are needed @ table

A: n_forks +=2 **CORRECT** B: n_forks += 1 C: n_forks = k D: None of the above E: I don't know

Invariants: Assertions That Do Not Change

Loop Invariant: an assertion that is true before and after each iteration (execution of body)

precondition: n_forks are needed @ table

k = 0
#INV: n_forks = num forks needed with k more guests
while k < n_more_guests:
 n_forks += 2
 k += 1
 invariant still holds here</pre>

postcondition: n_forks are needed @ table

What's a Helpful Invariant?

Loop Invariant: an assertion that is true before and after each iteration (execution of body)

- Documents the semantic meaning of your variables and their relationship (if any)
- Should help you understand the loop

Bad:

n_forks >= 0 True, but *doesn't help you understand the loop*

Good:

n forks == num forks needed with k more guests

Useful in order to conclude that you're adding guests to the table correctly

Task 2: Summing the Squares

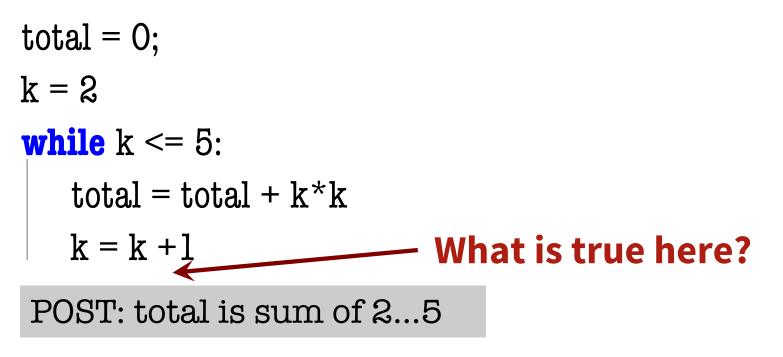
Task: sum the squares of **k** from **k = 2..5**

total = 0 k = 2while $k \le 5$: total = total + k k k = k + 1POST: total is sum of 2...5 k = 2 *#* invariant goes here k <= 5True k <= 5True k = k + 1k <= k + 1

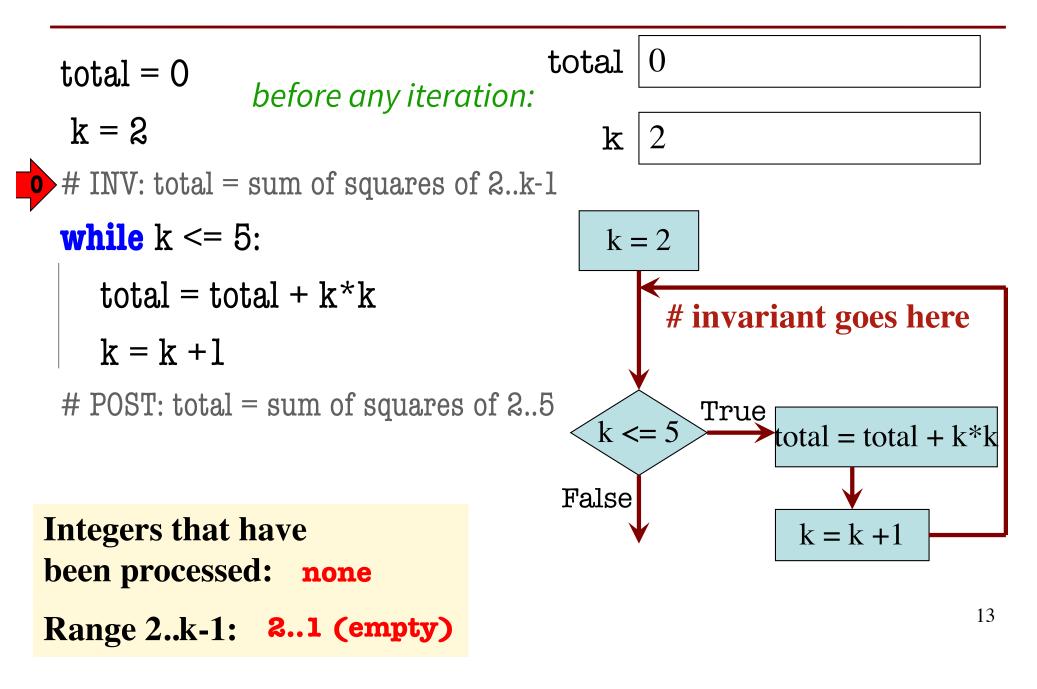
Loop processes range 2..5

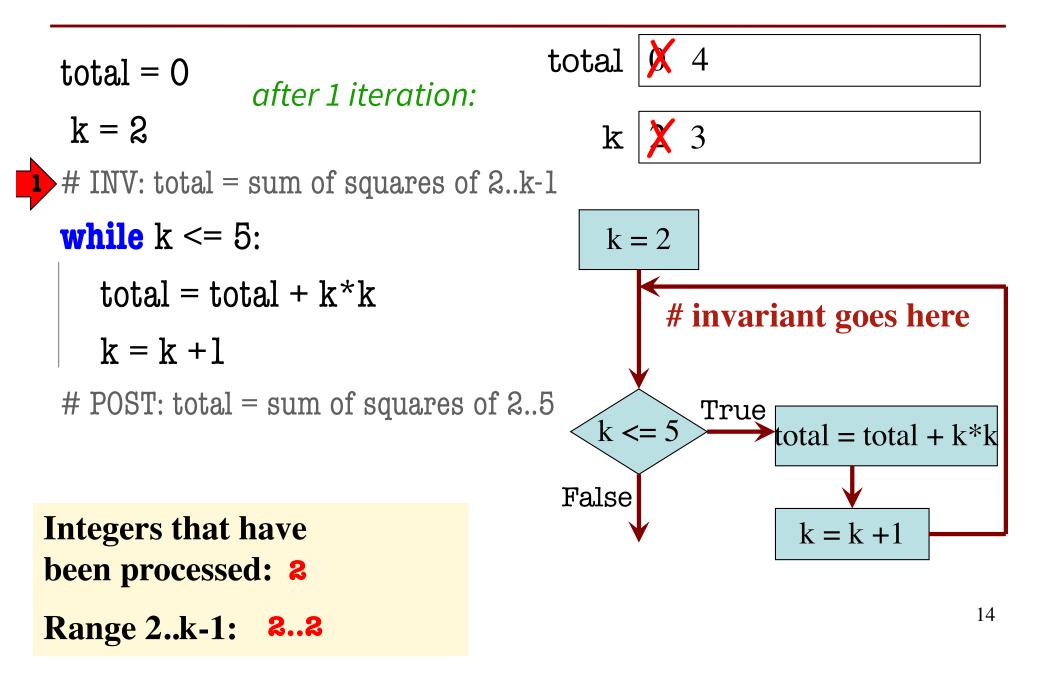
What is the invariant?

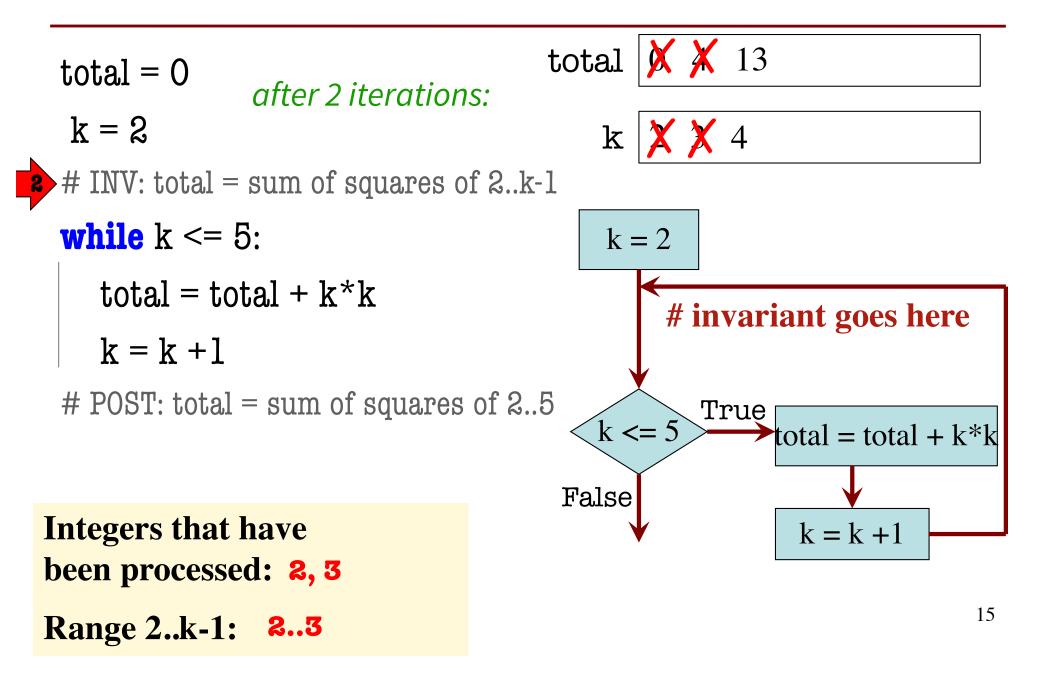
Task: sum the squares of **k** from **k = 2..5** What is true at the end of each loop iteration?

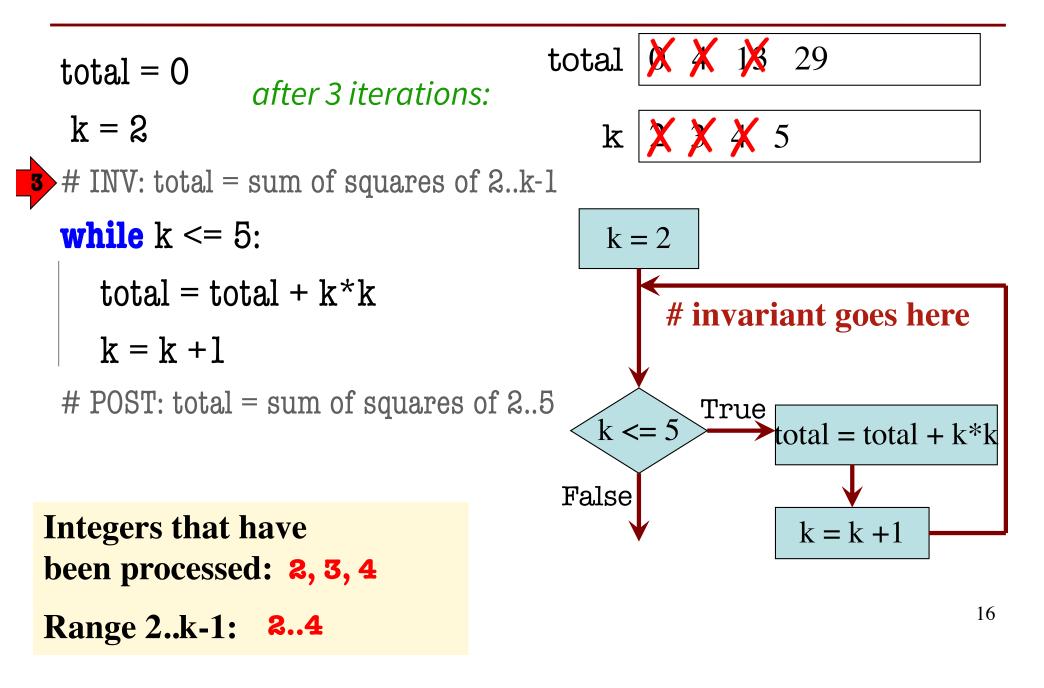


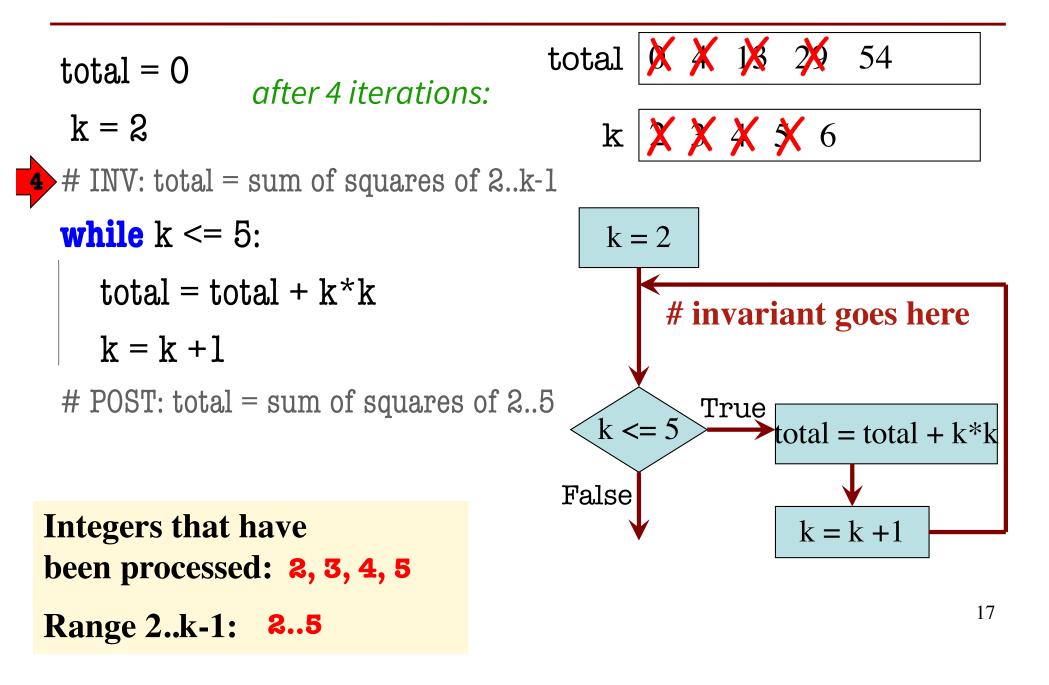
total should have added in the square of (k-1) total = sum of squares of 2..k-1



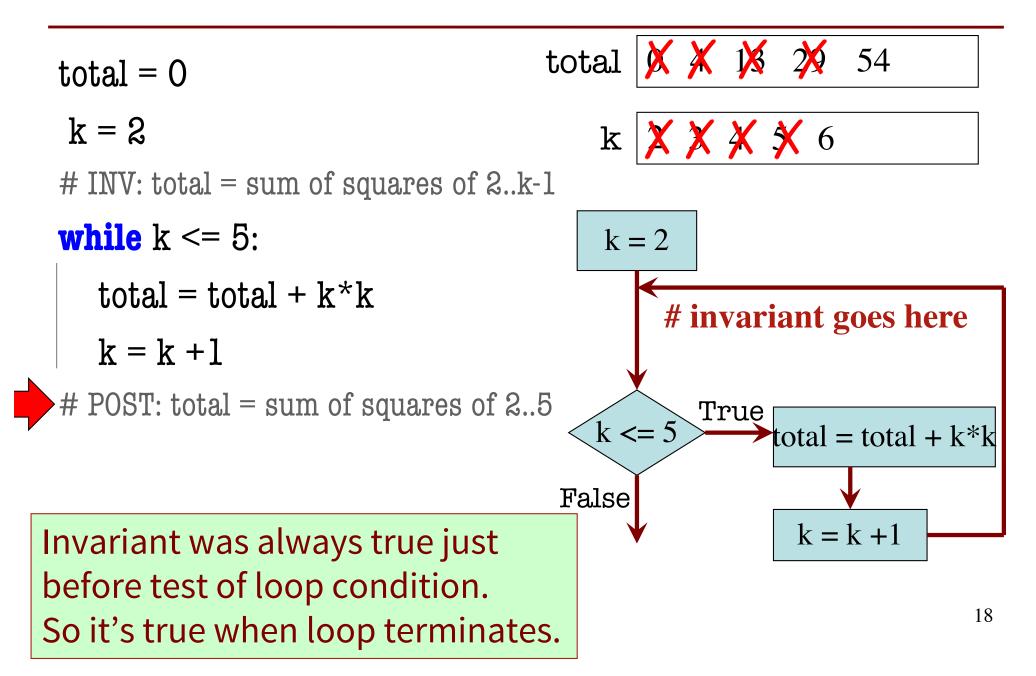








True Invariants → **True Postcondition**



Designing Integer while-loops

- 1. Recognize that a range of integers b..c has to be processed
- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization
- 6. Implement the body (aka repetend) (# Process k)

```
# Process b..c
```

Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed

while k <= c:

Process k

k = k + 1

Postcondition: range b..c has been processed

Task 3: count num adjacent equal pairs

1. Recognize that a range of integers b..c has to be processed

Approach:

Will need to look at characters O...len(s)-1

Will need to compare 2 adjacent characters in S.

Beyond that... not sure yet!

Task 3: count num adjacent equal pairs

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop (see postcondition)

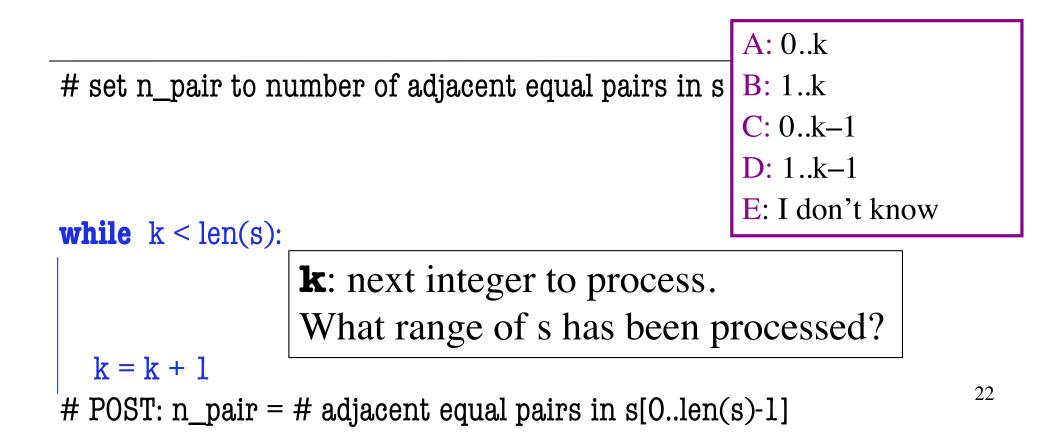
set n_pair to number of adjacent equal pairs in s

while k < len(s): # we're deciding k is the second in the current pair # otherwise, we'd set the condition to k < len(s) -1</pre>

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]

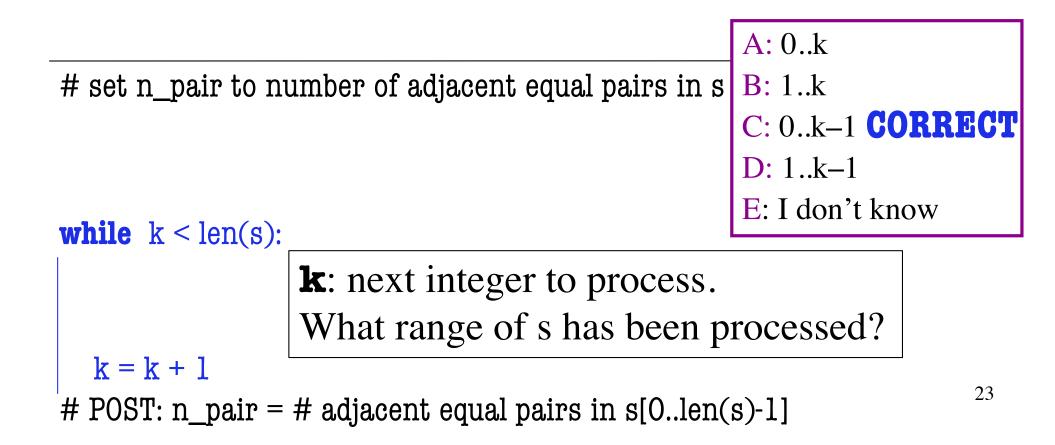
Q: What range of s has been processed?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop



A: What range of s has been processed?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop



Q: What is the loop invariant?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant

set n_pair to number of adjacent equal pairs in s

	 A: n_pair = num adj. equal pairs in s[1k] B: n_pair = num adj. equal pairs in s[0k] C: n_pair = num adj. equal pairs in s[1k–1] D: n_pair = num adj. equal pairs in s[0k–1] E: I don't know
k = k + 1	

POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]

A: What is the loop invariant?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant

set n_pair to number of adjacent equal pairs in s

INVARIANT:
while k < len(s):
A: n_pair = num adj. equal pairs in s[1..k]
B: n_pair = num adj. equal pairs in s[0..k]
C: n_pair = num adj. equal pairs in s[1..k-1]
D: n_pair = num adj. equal pairs in s[0..k-1] CORRECT
E: I don't know</pre>

POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]

Q: how to initialize k?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = ?

```
# INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):</pre>
```

k = k + 1
POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]

A: how to initialize k?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization

set n_pair to # adjacent equal pairs in s
n_pair = 0; k = ?

```
# INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):</pre>
```

```
k = k + 1
# POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]
```

Q: What do we compare to "process k"?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization
- 6. Implement the body (aka repetend) (# Process k)

```
# set n_pair to # adjacent equal pairs in s
```

```
n_{pair} = 0; k = 1
```

INV: n_pair = # adjacent equal pairs in s[0..k-1]

 while k < len(s):</td>
 A: s[k] and s[k+1]

 B: s[k-1] and s[k]

 C: s[k-1] and s[k+1]

 C: s[k-1] and s[k+1]

 D: s[k] and s[n]

 E: I don't know

 # POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]

A: What do we compare to "process k"?

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization
- 6. Implement the body (aka repetend) (# Process k)

```
# set n_pair to # adjacent equal pairs in s
```

 $n_{pair} = 0; k = 1$

INV: n_pair = # adjacent equal pairs in s[0..k-1]

while $k < len(s)$:	A: $s[k]$ and $s[k+1]$
	B: s[k-1] and s[k] CORRECT
	A: s[k] and s[k+1] B: s[k-1] and s[k] CORRECT C: s[k-1] and s[k+1]
$\mathbf{k} = \mathbf{k} + 1$	D: s[k] and s[n] E: I don't know
# POST: n pair = # adjacent equa	l pairs in $s[0] = 12$

Task 3: count num adjacent equal pairs

- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization
- 6. Implement the body (aka repetend) (# Process k)

```
# set n_pair to # adjacent equal pairs in s
```

```
n_{pair} = 0; k = 1
```

```
# INV: n_pair = # adjacent equal pairs in s[0..k-1]
```

```
while k < len(s):
```

```
if (s[k-1] == s[k]):
```

```
n_{pair} += 1
```

```
\mathbf{k} = \mathbf{k} + \mathbf{1}
```

POST: n_pair = # adjacent equal pairs in s[0..len(s)-1]

count num adjacent equal pairs: v1

Approach #1: compare s[k] to the character in front of it (s[k-1])

```
k-1 k
# set n_pair to # adjacent equal pairs in s
precondition: s is a string
n pair = 0
k = 1
# INV: n_pair = # adjacent equal pairs in s[0..k-1]
while k < len(s):
  if (s[k-1] == s[k]):
      n pair += 1
  k = k + 1
```

postcondition: n_pair = # adjacent equal pairs in s[0..len(s)-1]

count num adjacent equal pairs: v2

Approach #2: compare s[k] to the character in after it (s[k+1])

```
k+1
# set n_pair to # adjacent equal pairs in s
precondition: s is a string
n pair = 0
\mathbf{k} = \mathbf{0}
# INV: n_pair = # adjacent equal pairs in s[0..k]
while k < len(s) - l:
  if (s[k] == s[k+1]):
      n pair += 1
  k = k + 1
```

postcondition: n_pair = # adjacent equal pairs in s[0..len(s)-1]

Task 4: find largest element in list

- 1. Recognize that a range of integers b..c has to be processed
- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization
- 6. Implement the body (aka repetend) (# Process k)

```
# set big to largest element in int_list, a list of int, len(int_list) >= 1
Initialize variables (if necessary) to make invariant true
# Invariant: big is largest int in int_list[0...k-1]
```

while k < len(int_list):

Process k

k = k + 1

Q: What is the initialization? (careful!)

- 1. Recognize that a range of integers b..c has to be processed
- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization

set big to largest element in int_list, a list

```
A: k = 0; big = int_list[0]
B: k = 1; big = int_list[0]
C: k = 1; big = int_list[1]
D: k = 0; big = int_list[1]
E: None of the above
```

Invariant: big is largest int in int_list[0...k-1]
while k < len(int_list):</pre>

 $\mathbf{k} = \mathbf{k} + \mathbf{1}$

A: What is the initialization? (careful!)

- 1. Recognize that a range of integers b..c has to be processed
- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization

set big to largest element in int_list, a list

A: $k = 0$; $big = int_list[0]$
B : $k = 1$; big = int_list[0]
C: $k = 1$; big = int_list[1]
D : $k = 0$; big = int_list[1]
E: None of the above

Invariant: big is largest int in int_list[0...k-1]

An empty set of characters or integers has no maximum.

Be sure that 0..k-1 is not empty. You must start with k = 1.

Task 4: find largest element in list

- 1. Recognize that a range of integers b..c has to be processed
- 2. Write the command and equivalent postcondition
- 3. Write the basic part of the while-loop
- 4. Write loop invariant
- 5. Figure out any initialization
- 6. Implement the body (aka repetend) (# Process k)

```
# set big to largest element in int_list, a list of int, len(int_list) >= 1
```

 $k = 1; big = int_list[0]$

Invariant: big is largest int in int_list[0...k-1]

```
while k < len(int_list):</pre>
```

```
big = max(big, int_list[k])
```

```
k = k + 1
```