
Developing Loops
from Invariants

Review 3

• Creating loops from invariants
• What is on the exam
• Common mistakes

Outline

Feel free to ask questions at any time

Developing a Loop on a Range of Integers

• Given a range of integers a..b to process.
• Possible alternatives

§ Could use a for-loop: for x in range(a,b+1):
§ Or could use a while-loop: x = a; while a <= b:
§ Which one you can use will be specified

• But does not remove the need for invariants
§ Invariants: properties of variables outside loop

(as well as the loop counter x)
§ If body has any variables accessed outside of loop,

you need an invariant

Suppose you are trying to implement the command

Process a..b

Write the command as a postcondition:

post: a..b has been processed.

Developing an Integer Loop (a)

Set-up using for:

for k in range(a,b+1):
Process k

post: a..b has been processed.

Developing an Integer Loop (b)

Set-up using while:

while k <= b:
Process k
k = k + 1

post: a..b has been processed.

Developing an Integer Loop (b)

Add the invariant (for):

invariant: a..k-1 has been processed
for k in range(a,b+1):

Process k
post: a..b has been processed.

Developing an Integer Loop (c)

Note it is post condition
with the loop variable

Add the invariant (while):

invariant: a..k-1 has been processed
while k <= b:

Process k
k = k + 1

post: a..b has been processed.

Developing an Integer Loop (c)

Note it is post condition
with the loop variable

Fix the initialization:

init to make invariant true
invariant: a..k-1 has been processed
for k in range(a,b+1):

Process k
post: a..b has been processed.

Developing a For-Loop (d)

Nothing to do unless
invariant has variables

other than loop variable

Why did not use
loop invariants
with for loops

Fix the initialization:

init to make invariant true
invariant: a..k-1 has been processed
while k <= b:

Process k
k = k + 1

post: a..b has been processed.

Developing a For-Loop (d)

Has to handle the loop
variable (and others)

Figure out how to “Process k”:
init to make invariant true
invariant: a..k-1 has been processed
for k in range(a,b+1):

Process k
implementation of “Process k”

post: a..b has been processed.

Developing a For-Loop (e)

Figure out how to “Process k”:
init to make invariant true
invariant: a..k-1 has been processed
while k <= b:

Process k
implementation of “Process k”
k = k + 1

post: a..b has been processed.

Developing a For-Loop (e)

• Pay attention to range:
a..b or a+1..b or a…b-1 or …

• This affects the loop condition!
§ Range a..b-1, has condition k < b
§ Range a..b, has condition k <= b

• Note that a..a-1 denotes an empty range
§ There are no values in it

Range

• A magic square is a square where each row and column adds
up to the same number (often this also includes the diagonals,
but for this problem, we will not). For example, in the following
5-by-5 square, each row and column add up to 70:

Modified Question 3 from Spring 2008

def are_magic_rows(square, value):
"""Returns: True if all rows of square sum to value
Precondition: square is a 2d list of numbers"""
i = 0
invariant: each row 0..i-1 sums to value
while i < len(square) :

Return False if row i does not sum to value
rowsum = 0
invariant: elements 0..k-1 of square[i] sum to rowsum
for k in range(len(square)): # rows == cols

rowsum = rowsum + square[i][k]
if rowsum != value:

return False
i = i+1

invariant: each row 0..len(square)-1 sums to value
return True

def are_magic_rows(square, value):
"""Returns: True if all rows of square sum to value
Precondition: square is a 2d list of numbers"""
i = 0
invariant: each row 0..i-1 sums to value
while i < len(square) :

Return False if row i does not sum to value
rowsum = 0
invariant: elements 0..k-1 of square[i] sum to rowsum
for k in range(len(square)): # rows == cols

rowsum = rowsum + square[i][k]
if rowsum != value:

return False
i = i+1

invariant: each row 0..len(square)-1 sums to value
return True

def are_magic_rows(square, value):
"""Returns: True if all rows of square sum to value
Precondition: square is a 2d list of numbers"""
i = 0
invariant: each row 0..i-1 sums to value
while i < len(square) :

Return False if row i does not sum to value
rowsum = 0
invariant: elements 0..k-1 of square[i] sum to rowsum
for k in range(len(square)): # rows == cols

rowsum = rowsum + square[i][k]
if rowsum != value:

return False
i = i+1

invariant: each row 0..len(square)-1 sums to value
return True

Inner invariant was
not required

Invariants and the Exam

• We will not ask you for an invariant without
both giving you precondition/postcondition
§ So we will give you every extra variable

other than the loop variables
§ You just need to reword with the loop variable

• We will try to keep it simple
§ Will only have one loop variable unless it is

one of the five required algorithms
§ Only need box diagrams for required algorithms
§ If more complicated, will give you the invariant

Given lists b, c, d which with single digit elements
len(b) = len(c) >= len(d)
Want to ‘add’ c and d and put result in b
h = ______
k = ______
carry = _______
invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while ___________ :

postcondition: b contains the sum of c and d
except that the carry contains the 0 or 1 at the beginning

Modified Question 4 from Spring 2007

Given lists b, c, d which with single digit elements
len(b) = len(c) >= len(d)
Want to ‘add’ c and d and put result in b
h = ______
k = ______
carry = _______
invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while ___________ :

postcondition: b contains the sum of c and d
except that the carry contains the 0 or 1 at the beginning

Modified Question 4 from Spring 2007

c
d
b

b[0]

d[0]

h = len(c)
k = len(d)
carry = 0
invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while h > 0:

h = h -1; k = k – 1 # Easier if decrement first
x = d[k] if k>= 0 else 0
b[h] = c[h]+x+carry
if b[h] >= 10:

carry = 1; b[h] = b[h]-10
else:

carry = 0
postcondition: b contains the sum of c and d

except that the carry contains the 0 or 1 at the beginning

Modified Question 4 from Spring 2007

c
d
b

• DO use variables given in the invariant.
• DON’T use other variables.

invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while ___________ :

Okay to use b, c, d, h, k, and carry
Anything else should be ‘local’ to while

DOs and DON’Ts #1

Will cost you points

on the exam!

DO double check corner cases!
• h = len(c)
• while h > 0:

§ What will happen when h=1 and h=len(c)?
§ If you use h in c (e.g. c[x]) can you possibly get an error?

DOs and DON’Ts #2

invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while h > 0:

… Range is off by 1.
How do you know?

Questions?

