
Recursion

Review 2

The Two Types of Recursion in CS 1110

• Recursive Definitions
§ The specification itself is recursive
§ Code simply implements the definition
§ Example: The shapes in A4

• Divide and Conquer
§ The specification is not recursive
§ But it involves data that can be broken up
§ Example: Most of Lab 8

Recursive Definition: Spring 2006

• The Sierpinski Carpet has the following form

• Assume the following helper
def drawsquare(x,y,side):

"""Draws a square of length side centered at x,y
Precondition: x,y,side are numbers >= 0"""

d-1

d-1

d-1

d-1 d-1

d-1

d-1d-1

depth 0 depth 1 depth 2 depth d

Recursive Definition: Spring 2006

def carpet(x,y,side,d) {
"""Draws a Sierpinski Carpet of depth d
The carpet is has length side centered at x,y
Precondition: x,y,side,d are numbers >= 0"""

Recursive Definition: Spring 2006

def carpet(x,y,side,d) {
"""Draws a Sierpinski Carpet of depth d"""
if d == 0:

drawsquare(x,y,side)
else:

carpet(x-side/3,y-side/3,side/3,d-1)
carpet(x,y-side/3,side/3,d-1)
carpet(x+side/3,y-side/3,side/3,d-1)
carpet(x-side/3,y,side/3,d-1)
carpet(x+side/3,y,side/3,d-1)
carpet(x-side/3,y+side/3,side/3,d-1)
carpet(x,y+side/3,side/3,d-1)
carpet(x+side/3,y+side/3,side/3,d-1)

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combining them should give bigger answer

Complement of an Integer

def complement(int n) {
"""Returns: the complement of the number n
Each decimal digit in n is replaced by 10-n.
Example: the result for 93723 is 17387.
Precondition: n > 0 and int, and no digit of n is 0"""

+ (10 - n%10)

Complement of an Integer

def complement(int n) {
"""Returns: the complement of the number n
Precondition: n > 0 and int, and no digit of n is 0"""
Small Data

– n
Break it up and recurse

Combine answer

Complement of an Integer

def complement(int n) {
"""Returns: the complement of the number n
Precondition: n > 0 and int, and no digit of n is 0"""
Small Data
if n < 10:

return 10 – n10 – n
Break it up and recurse
left = complement(n/10)
right = 10 - n%10 # complement(n % 10)
Combine answer
return left*10+right

Combining Recursion and Loops

def deepsum(nested):
"""Returns: Sum of all numbers in nested list
Examples:

deepsum([1,2,3]) is 6
deepsum([[1,2],[3]]) is 6
deepsum([[1,[2,3]],[[[4]]]]) is 10

Precondition: nested a nested list of ints (or empty)"""

Combining Recursion and Loops

def deepsum(nested):
"""Returns: Sum of all numbers in nested list
Precondition: nested a nested list of ints (or empty)"""
Small Data

Recurse over EACH element in the list

Combining Recursion and Loops

def deepsum(nested):
"""Returns: Sum of all numbers in nested list
Precondition: nested a nested list of ints (or empty)"""
Small Data
if len(nested) == 0:

return 0
Recurse over EACH element in the list

Combining Recursion and Loops

def deepsum(nested):
"""Returns: Sum of all numbers in nested list
Precondition: nested a nested list of ints (or empty)"""
Small Data
if len(nested) == 0:

return 0
Recurse over EACH element in the list
accum = 0
for item in nested:

if type(item) == list:
accum = accum + deepsum(item)

else:
accum = accum + item

return accum

Recursion and Objects

• Class Person (person.py)
§ Objects have 3 attributes
§ name: String
§ mom: Person (or None)
§ dad: Person (or None)

• Represents the “family tree”
§ Goes as far back as known
§ Attributes mom and dad

are None if not known

• Constructor: Person(n,m,d)
• Or Person(n) if no mom, dad

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
Small Data
No mom or dad (no ancestors)

Break it up and recurse
Has mom or dad
Count ancestors of each one
(plus mom, dad themselves)
Add them together

Combine

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
Small Data
if p.mom == None and p.dad == None:

return 0

Break it up and recurse
moms = 0
if not p.mom == None:

moms = 1+num_ancestors(p.mom)
dads = 0
if not p.dad== None:

dads = 1+num_ancestors(p.dad)
Combine
return moms+dads

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Extra Problems

• Use recursion to find minimum element in a list
§ Small data is easy
§ Hard part is combine

• Given list, use recursion to check if it is sorted
§ Small data is easy
§ Again, hard part is combine

• Given a string s, list all the permutations of s:
§ 'XZY' à 'XZY', 'XYZ', 'ZXY', 'ZYX', 'YXZ', 'YZX'
§ This one is a little trickier

One Last Problem
class FacebookProfile(object):

"""name [str]: name of this profile
friends [list of FacebookProfile]: friends list"""

We want to answer the question:
• Is this profile at most 6 degrees away from Kevin Bacon?
• In other words, is Kevin Bacon a friend of a friend of a

friend of a friend of a friend of a friend?

Specification (Method inside class FacebookProfile):
def sixDegreesOfBacon(self):

"""Returns: True if this FacebookProfile is at most 6
degrees away from Kevin Bacon; False otherwise"""

6-Degrees of Kevin Bacon
class FacebookProfile(object):

…
def sixDegreesOfBacon(self):

"""Returns: True if this FacebookProfile is at most 6 degrees away from Kevin Bacon"""

def sixDegreesHelper(self,n):
"""Returns: True if this FacebookProfile is at most n degrees away from Kevin Bacon
Precondition: n > 0 an int"””

6-Degrees of Kevin Bacon
class FacebookProfile(object):

…
def sixDegreesOfBacon(self):

"""Returns: True if this FacebookProfile is at most 6 degrees away from Kevin Bacon"""
return self.sixDegreesHelper(6)

def sixDegreesHelper(self,n):
"""Returns: True if this FacebookProfile is at most n degrees away from Kevin Bacon
Precondition: n > 0 an int"””
Small Data

Break it up, recurse and combine

6-Degrees of Kevin Bacon
class FacebookProfile(object):

…
def sixDegreesOfBacon(self):

"""Returns: True if this FacebookProfile is at most 6 degrees away from Kevin Bacon"""
return self.sixDegreesHelper(6)

def sixDegreesHelper(self,n):
"""Returns: True if this FacebookProfile is at most n degrees away from Kevin Bacon
Precondition: n >= 0 an int"””
Small Data
if self.name == 'Kevin Bacon':

return True
if n == 0:

return False
Break it up, recurse and combine

6-Degrees of Kevin Bacon
class FacebookProfile(object):

…
def sixDegreesOfBacon(self):

"""Returns: True if this FacebookProfile is at most 6 degrees away from Kevin Bacon"""
return self.sixDegreesHelper(6)

def sixDegreesHelper(self,n):
"""Returns: True if this FacebookProfile is at most n degrees away from Kevin Bacon
Precondition: n > 0 an int"””
Small Data
if self.name == 'Kevin Bacon':

return True
if n == 0:

return False
Break it up, recurse and combine
for f in self.friends:

if f.sixDegreesHelper(n-1):
return True

return False

Questions?

