
Sequence Algorithms
(Continued)

Lecture 26

Announcements for This Lecture

Assignment & Lab Next Week

• Last Week of Class!
§ Finish sorting algorithms
§ Special final lecture

• Lab held, but is optional
§ Unless only have 10 labs
§ Also use lab time on A7

• Details about the exam
§ Multiple review sessions

11/22/16 2Sequences (Continued)

• A6 is not graded yet
§ Done early next week

• A7 due Mon, Dec. 4
• But extensions possible
• Just ask for one!
• But make good effort

§ Lab Today: Office Hours
• Get help on A7 paddle
• Anyone can go to any lab

Recall: Horizontal Notation

Example of an assertion about an sequence b. It asserts that:
1. b[0..k–1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

Given index h of the first element of a segment and
index k of the element that follows that segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

b
0 h k

h h+1

(h+1) – h = 1

b <= sorted >=
0 k len(b)

11/22/16 Sequences (Continued) 3

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:
x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

<= x x ? >= x
h i j k

inv: b

• Agrees with precondition when i = h, j = k+1
• Agrees with postcondition when j = i+1

11/22/16 Sequences (Continued) 4

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/22/16 Sequences (Continued) 5

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/22/16 Sequences (Continued) 6

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/22/16 Sequences (Continued) 7

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/22/16 Sequences (Continued) 8

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/22/16 Sequences (Continued) 9

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

Dutch National Flag Variant

• Sequence of integer values
§ ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
§ Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

11/22/16 Sequences (Continued) 10

Dutch National Flag Variant

• Sequence of integer values
§ ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
§ Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

pre: t = h,
i = k+1,
j = k

post: t = i

11/22/16 Sequences (Continued) 11

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/22/16 Sequences (Continued) 12

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/22/16 Sequences (Continued) 13

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/22/16 Sequences (Continued) 14

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/22/16 Sequences (Continued) 15

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

-1 -2 -1 0 0 0 3 6 3
h t j k

Flag of Mauritius

• Now we have four colors!
§ Negatives: ‘red’ = odd, ‘purple’ = even
§ Positives: ‘yellow’ = odd, ‘green’ = even

?
h k

pre: b

< 0 odd < 0 even ≥ 0 odd ≥ 0 even
h k

post: b

< 0, o < 0, e ≥ 0, o ? ≥ 0, e
h r s i t k

11/22/16 Sequences (Continued) 16

inv: b

Flag of Mauritius

11/22/16 Sequences (Continued) 17

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 7 5 -2 -6 1 0 2 4
h r s i t k One swap is not

good enough

Flag of Mauritius

11/22/16 Sequences (Continued) 18

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 -2 5 7 -6 1 0 2 4
h r s i t k Need two swaps

for two spaces

Flag of Mauritius

11/22/16 Sequences (Continued) 19

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 -2 5 7 -6 1 0 2 4
h r s i t k And adjust the

loop variables

Flag of Mauritius

11/22/16 Sequences (Continued) 20

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 -2 5 7 -6 1 0 2 4
h r s i t k See algorithms.py

for Python code

-1 -3 -5 -4 -2 -6 7 5 1 0 2 4
h r s i t k

Flag of Mauritius

11/22/16 Sequences (Continued) 21

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 -2 5 7 -6 1 0 2 4
h r s i t k See algorithms.py

for Python code

-1 -3 -5 -4 -2 -6 7 5 1 0 2 4
h r s i t k

-1 -3 -5 -4 -2 -6 7 5 1 0 2 4
h r s i t k

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].

11/22/16 Sequences (Continued) 22

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

11/22/16 Sequences (Continued) 23

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

?
h k

pre: b

v not here v ?
h i k

post: b

11/22/16 Sequences (Continued) 24

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

v not here

i
h k

?
h k

pre: b

v not here v ?
h i k

post: b

b

OR

11/22/16 Sequences (Continued) 25

Linear Search

v not here

i
h k

?
h k

pre: b

v not here v ?
h i k

post: b

b

OR

v not here ?
h i k

inv: b

11/22/16 Sequences (Continued) 26

Linear Search

def linear_search(b,v,h,k):
"""Returns: first occurrence of v in b[h..k-1]"""
Store in i index of the first v in b[h..k-1]
i = h

invariant: v is not in b[0..i-1]
while i < k and b[i] != v:

i = i + 1

post: v is not in b[h..i-1]
i >= k or b[i] == v
return i if i < k else -1

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

11/22/16 Sequences (Continued) 27

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].

11/22/16 Sequences (Continued) 28

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].
• Better:

§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i] <= v and v < b[i+1..k-1]

• Below, the array is in non-descending order:

?
h k

pre: b

<= v
h i k

post: b > v

11/22/16 Sequences (Continued) 29

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].
• Better:

§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i] <= v and v < b[i+1..k-1]

• Below, the array is in non-descending order:

?
h k

pre: b

<= v
h i k

post: b

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half

> v

< v
h i j k

inv: b > v?
11/22/16 Sequences (Continued) 30

Extras Not Covered in Class

11/22/16 Sequences (Continued) 31

Loaded Dice

• Sequence p of length n represents n-sided die
§ Contents of p sum to 1
§ p[k] is probability die rolls the number k

• Goal: Want to “roll the die”
§ Generate random number r between 0 and 1
§ Pick p[i] such that p[i-1] < r ≤ p[i]

0.1 0.1 0.1 0.1 0.3 0.3
1 2 3 4 5 6

weighted d6, favoring 5, 6

0.1 0.1 0.1 0.1 0.3 0.3
0.1 0.2 0.3 0.4 0.7 1.0

11/22/16 Sequences (Continued) 32

Loaded Dice

• Want: Value i such that p[i-1] < r <= p[i]

• Same as precondition if i = 0
• Postcondition is invariant + false loop condition

?
0 n

pre: b

r > sum
0 i n

post: b r <= sum

r > sum
0 i n

inv: b ?

11/22/16 Sequences (Continued) 33

inv
10

p[0] p[1] p[i]

… …
p[n–1]

r is not here pEnd

Loaded Dice
def roll(p):

"""Returns: randint in 0..len(p)-1; i returned with prob. p[i]
Precondition: p list of positive floats that sum to 1."""
r = random.random() # r in [0,1)
Think of interval [0,1] divided into segments of size p[i]
Store into i the segment number in which r falls.
i = 0; sum_of = p[0]
inv: r >= sum of p[0] .. p[i–1]; pEnd = sum of p[0] .. p[i]
while r >= sum_of:

sum_of = sum_of + p[i+1]
i = i + 1

post: sum of p[0] .. p[i–1] <= r < sum of p[0] .. p[i]
return i r < sum

postr
10

p[0] p[1] p[i]

… …
p[n–1]

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep
inv true?

11/22/16 Sequences (Continued) 34

Reversing a Sequence

1 2 3 4 5 6 7 8 9 9 9 9 b
h k

change:

into 9 9 9 9 8 7 6 5 4 3 2 1b
h k

not reversed
h k

pre: b

reversed
h k

post: b

not reversed
h i j k

inv: b swappedswapped

11/22/16 Sequences (Continued) 35

