
11/18/16

1

Recall: Horizontal Notation

Example of an assertion about an sequence b. It asserts that:
1. b[0..k–1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

Given index h of the first element of a segment and
index k of the element that follows that segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

b
0 h k

h h+1

(h+1) – h = 1

b <= sorted >=
0 k len(b)

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

Partition Algorithm Implementation
def partition(b, h, k):

"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

Dutch National Flag Variant

• Sequence of integer values
§ ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
§ Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

pre: t = h,
i = k+1,
j = k

post: t = i

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

-1 -2 -1 0 0 0 3 6 3
h t j k

11/18/16

2

Flag of Mauritius

• Now we have four colors!
§ Negatives: ‘red’ = odd, ‘purple’ = even
§ Positives: ‘yellow’ = odd, ‘green’ = even

?
h k

pre: b

< 0 odd < 0 even ≥ 0 odd ≥ 0 even
h k

post: b

< 0, o < 0, e ≥ 0, o ? ≥ 0, e
h r s i t k

inv: b

Flag of Mauritius

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 -2 5 7 -6 1 0 2 4
h r s i t k Need two swaps

for two spaces

Flag of Mauritius

-1 -3 -2 -4 7 5 -5 -6 1 0 2 4
h r s i t k
< 0, o < 0, e ≥ 0, o ? ≥ 0, e

-1 -3 -5 -4 -2 5 7 -6 1 0 2 4
h r s i t k See algorithms.py

for Python code

-1 -3 -5 -4 -2 -6 7 5 1 0 2 4
h r s i t k

-1 -3 -5 -4 -2 -6 7 5 1 0 2 4
h r s i t k

Linear Search

v not here

i
h k

?

h k
pre: b

v not here v ?

h i k
post: b

b

OR

v not here ?

h i k
inv: b

Linear Search

def linear_search(b,c,h):
"""Returns: first occurrence of c in b[h..]"""
Store in i the index of the first c in b[h..]
i = h

invariant: c is not in b[0..i-1]
while i < len(b) and b[i] != c:

i = i + 1

post: c is not in b[h..i-1]
i >= len(b) or b[i] == c
return i if i < len(b) else -1

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].
• Better:

§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i] <= v and v < b[i+1..k-1]

• Below, the array is in non-descending order:

?

h k
pre: b

<= v

h i k
post: b

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half

> v

< v

h i j k
inv: b > v?

