Lecture 25

Designing Sequence
Algorithms

Announcements for This Lecture

Next Week Assignment 7

e There is no lab next week e Start working on it now!

= But Tuesday hours are open * Timeline 1s very important

* Open to EVERYONE = Else too much stress at end

* Go for help on lab or A7 Goal: Move ball before break
e But lecture is important = Historically biggest hurdle

= Continue Today’s topic = Use lab next week

= Setting us up for sorting e Need an Extension?
e Try to finish lab 12 first = Cannot put due date in finals

* Frees remaining time for A7 = But you are allowed to ask

11/17/16 Sequence Algorithms 2

Horizontal Notation for Sequences

0 k len(b)
b <= sorted >=

Example of an assertion about an sequence b. It asserts that:

1. b[0.k-1] 1s sorted (i.e. its values are in ascending order)

2. Everything in b[0..k-1] is < everything in b[k..len(b)-1]

0 h k

b

Given index h of the first element of a segment and h h+l1

index k of the element that follows that segment,

the number of values in the segment 1s k — h.

blh ..k — 1] has k — h elements in it. (h+1)-h=1

11/17/16 Sequence Algorithms

Developing Algorithms on Sequences

Specity the algorithm by giving its precondition

and postcondition as pictures.

Draw the invariant by drawing another picture that

“generalizes” the precondition and postcondition

* The invariant 1s true at the beginning and at the end

11/17/16

The four loop design questions
1.

How does loop start (how to make the invariant true)?

2. How does it stop (is the postcondition true)?
3.
4

. How does the body keep the invariant true?

How does the body make progress toward termination?

Sequence Algorithms

Generalizing Pre- and Postconditions

e Dutch national flag: tri-color

= Sequence of 0..n-1 of red, white, blue "pixels"

= Arrange to put reds first, then whites, then blues

0 n
pre: b ?

0 n
post: b| reds whites blues

0] k 1 n
inv: b| reds| whites blues

11/17/16

Sequence Algorithms

(values in 0..n-1 are unknown)

Make the red, , blue
sections initially empty:

* Range 1..1-1 has 0 elements
* Main reason for this trick

Changing loop variables turns
invariant into postcondition.

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

pre: b

post: b

0

?

x 1s the min of this segment

(values in 0..n

and n>=0
are unknown)

e Put negative values before nonnegative ones.

pre: b

post: b

11/17/16

0

<0

Sequence Algorithms

n

n

(values in 0..n

and n>=0
are unknown)

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

0

pre: b ?
0

post: b x 1s the min of this segment
0]

Inv: b | x is min of this segment ?

(values in 0..n

and n>=0
are unknown)

(values in j..n
are unknown)

e Put negative values before nonnegative ones.

0

pre: b

post: b <0

11/17/16

Sequence Algorithms

n

n

(values in 0..n

and n>=0
are unknown)

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

0 n
(values in 0..n
. 9 =
pre: b : and n>=0 are unknown)
0 n
post: b X is the min of this segment
0 ' n D
inv: b xis min of thi J 5 pre:] =0 (values in j..n
Inv: X 1S min of this segment ! post: j=n are unknown)
e Put negative values before nonnegative ones.
0 . (values in O
values i v..n
.) =
pre: b i and n>=0 are unknown)
0 k n
post: b <0 >=0

11/17/16 Sequence Algorithms

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

0

(values in 0..n
are unknown)

(values in j..n
are unknown)

n
pre: b ? and n>=0
0 n
post: b x 1s the min of this segment
0] n {pre: 1=0 }
Inv: b x is min of this segment ? post: j =n
e Put negative values before nonnegative ones.
0 n
pre: b ? and n>=0
0 k n
post: b <0 >=0
0] n
inv: b <0 >=(

11/17/16

Sequence Algorithms

(values in 0..n
are unknown)

(values in k..j
are unknown) 9

Generalizing Pre- and Postconditions

e Finding the minimum of a sequence.

0 n
. (values in 0..n
pre: b ? and n>=0 are unknown)
0 n
post: b x 1s the min of this segment
0 ' n o
_ —— :] pre: j=0 (values in j..n
inv: b | x is min of this segment ? post: j=n are unknown)
e Put negative values before nonnegative ones.
0 n (values in 0
values 1 v..n
pre: b ? and n>=0 are unknown)
0 k n
post: b <0 >=0
0 k _] n - k=0
pre: k=0, lues in k.
v b <0 9 =0 e (values in k..j

11/17/16 Sequence Algorithms post: k = J are unknOWH)IO

Partition Algorithm

e (i1ven a sequence b[h..k] with some value x 1n b[h]:

pre: b

h

k

X

?

e Swap elements of b[h..k] and store in j to truthify post:

post: b

change:

Into

11/17/16

h

1

1+1

k

<=X

X

>= X

h

k

bl|354162381

h

k

bl121354638

* x 1s called the pivot value
" X 1$ not a program variable

" denotes value initially in b[h]

Sequence Algorithms 11

Partition Algorithm

e (i1ven a sequence b[h..k] with some value x 1n b[h]:

pre: b

h

k

X

?

e Swap elements of b[h..k] and store in j to truthify post:

post: b

change:

Into

or

11/17/16

h

1

1+1

k

<=X

X

>= X

h

k

bl|354162381

h 1

k

bl121354638

h 1

k

bl123134568

* x 1s called the pivot value
" X 1$ not a program variable

" denotes value initially in b[h]

Sequence Algorithms 12

Partition Algorithm

e (i1ven a sequence b[h..k] with some value x 1n b[h]:

pre: b

e Swap elements of b[h..k] and store in j to truthify post:

post: b

11/17/16

h

k

X

?

h

1

1+1

k

<=X

X

>= X

Sequence Algorithms

13

Partition Algorithm

Given a sequence b[h..k] with some value x in b[h]:
h k

pre: b | x ?

Swap elements of b[h..k] and store in j to truthify post:

h 1 1+1 k
post: b <=X X >= X

h 1] k
inv: b <=X X ? >=X

Agrees with precondition when1=h, j=k+1
Agrees with postcondition when j =1+1

11/17/16 Sequence Algorithms

14

Partition Algorithm Implementation

def partition(b, h, k):

"""Partition list blh..k] around a pivot x = b[h]"™"

i=h;j=k+1;x="0[h]

invariant: b[h..i-1] < x, b[i] = %, b[j..k] >=x

while i <j-1: / N\

i bli+l] >= x: partition(b,h,k), not partition(b[h:k+1])
Move to end of block.

_swap(b,i+1,j-1)

Remember, slicing always copies the list!

j=j-1 We want to partition the original list
else: # bli+l]<x \. /
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is X, and b[i+1.k] >=x
return i

11/17/16 Sequence Algorithms 15

Partition Algorithm Implementation

def partition(b, h, k): <=X|Xx ? >= X
"""Partition list blh..k] around a pivot x = b[h]"™" h 1 |li1+1 j k
1=h;j=k+l;x=Dlh] 1 2(3|1 506 3 8
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >=x
while i <j-1:

if b[i+1] >=x:
Move to end of block.
_swap(b,i+1,j-1)
J=Jj-1
else: # bli+l]<x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is X, and b[i+1.k] >=x
return i

11/17/16 Sequence Algorithms

Partition Algorithm Implementation

def partition(b, h, k): <=X|X ? >=X
"""Partition list blh..k] around a pivot x = b[h]"™" h 1 |li1+1 j k
1=h;j=k+l; x="Dlh] 1 2(3/1 50[6 3 8
invariant: b[h..i-1] < x, b[i] = %, b[j..kK] >=x
while i <j-1: h 1 1+l] k
if bli+1] >= x: 1 2 1|3/50[(6 3 8
Move to end of block. A
_swap(b,i+1,j-1)
J=Jj-1
else: # bli+l]<x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is X, and b[i+1.k] >=x
return i

11/17/16 Sequence Algorithms

Partition Algorithm Implementation

def partition(b, h, k): <=X|Xx ? >= X
"""Partition list b[h..k] around a pivot x = b[h]""" h 1 11+1 j k
1=h;j=k+l; x=blh] 1 2(3|1 50|63 8
invariant: b[h..i-1] < x, b[i] = %, b[j..kK] >=x
while i <j-1: h 1 1+l] k

if bli+l] >=x: 1 2 1|35 0[|6 38
Move to end of block. A
else: # bli+l]<x 1 2 1)3]0]5 638
_swap(b,i,i+1) A
i=i+1
post: b[h..i-1] < x, b[i] is X, and b[i+1.k] >=x
return i

11/17/16 Sequence Algorithms

Partition Algorithm Implementation

def partition(b, h, k): <=X|Xx ? >= X
"""Partition list blh..k] around a pivot x = b[h]"™" h 1 |li1+1 j k
1=h;j=k+l;x=Dlh] 1 2(3|1 506 3 8
invariant: b[h..i-1] < x, b[i] = %, b[j..kK] >=x
while i <j-1: h 1 1+l] k

if bli+1] >=x: 1 2 1{3|5 0|6 3 8
Move to end of block. A
j_ixis].rapl(b,i+lj-l) h ; i K
else: # bli+l]<x 1 2 1]3]0[5 6 3 8
_swap(b,i,i+1) A
i=i+1 h 1] k
post: b[h..i-1] <X, b[i] is X, and b[i+1..kK] >=x 12 10!356 3%
return i A

11/17/16 Sequence Algorithms

Dutch National Flag Variant

* Sequence of integer values
" ‘red’ =negatives, ‘white’ =0, ‘blues’ = positive
* Only rearrange part of the list, not all

h k
pre: b ?

h k
post: b <0 =0 >0

h t 1] k
inv: b <0 71 =0 | >0

11/17/16 Sequence Algorithms

Dutch National Flag Variant

* Sequence of integer values
" ‘red’ =negatives, ‘white’ =0, ‘blues’ = positive
* Only rearrange part of the list, not all

h k
pre: b ?
h k
post: b <0 =0 >0 pre: t=h,
1=k+1,
h t 1] k j=k
mmv: b <0 ? -0 | >0 kpost: t=1 y

11/17/16 Sequence Algorithms 21

Dutch National Flag Algorithm

def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)""
t=h;i=k+1,j=k;

inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] > O
while t <i:

if b[i-1] < O:

swap(b,i-1,t)

t=1t+1

elif b[i-1] == O:

. i=il

else:

swap(b,i-1,j)

i=il;j=jl
post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/17/16 Sequence Algorithms

<0
h

=0
1]

-1 -2

3-10

00

Dutch National Flag Algorithm

def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)""
t=h;i=k+1,j=k;

inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] > O
while t <i:

if b[i-1] < O:

swap(b,i-1,t)

t=1t+1

elif b[i-1] == O:

. i=il

else:

swap(b,i-1,j)

i=il;j=jl

post: b[h..i-1] <0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/17/16 Sequence Algorithms

<0 ? =01 >0
h t 1] k
-1 2(3-1 0({0 O 3
h t 1] k
-1 213 -1{0 0 O 3

23

Dutch National Flag Algorithm

def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)""
t=h;i=k+1,j=k;

inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] > O
while t <i:

if b[i-1] < O:

swap(b,i-1,t)

t=1t+1

elif b[i-1] == O:

. i=il

else:

swap(b,i-1,j)

i=il;j=jl

post: b[h..i-1] <0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/17/16 Sequence Algorithms

<0 ? =01 >0
h t 1] k
-1 2(3-1 0({0 O 3
h t 1] k
-1 213 -1{0 0 O 3
h t 1] k
-1 -2 -113(0 0 O 3
A

Dutch National Flag Algorithm

def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)""
t=h;i=k+1,j=k;

inv: b[h..t-1] <O, b[t..i-1] 2, b[i..j1 = O, b[j+1..k] > O
while t <i:

if b[i-1] < O:

swap(b,i-1,t)

t=1t+1

elif b[i-1] == O:

. i=il

else:

swap(b,i-1,j)

i=il;j=jl

post: b[h..i-1] <0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/17/16 Sequence Algorithms

<0 ? =0 >0

h t 1]

-1 213-1 0]0 0|6 3

h t 1] k

-1 213 -1]0 0 0|6 3

h t 1] k

-1 -2 -113|0 0 0|6 3
A

h t] k

-1 -2 -1{0 0 0|3 6 3
~__7

Will Finish This Next Week

11/17/16

Sequence Algorithms

26

