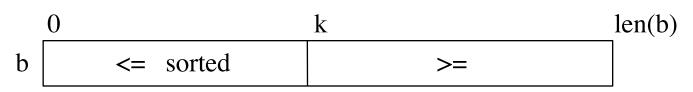
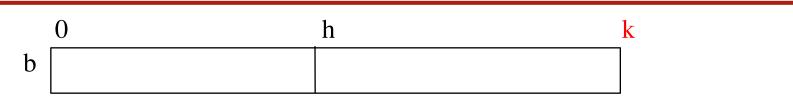


Announcements for This Lecture


Next Week

- There is no lab next week
 - But Tuesday hours are open
 - Open to **EVERYONE**
 - Go for help on lab or A7
- But lecture is **important**
 - Continue Today's topic
 - Setting us up for sorting
- Try to finish lab 12 first
 - Frees remaining time for A7

Assignment 7


- Start working on it now!
 - Timeline is very important
 - Else too much stress at end
- **Goal**: Move ball before break
 - Historically biggest hurdle
 - Use lab next week
- Need an Extension?
 - Cannot put due date in finals
 - But you are allowed to *ask*

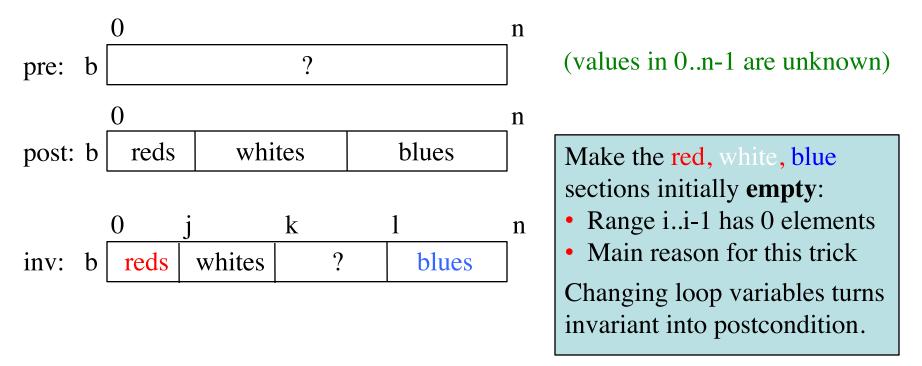
Horizontal Notation for Sequences

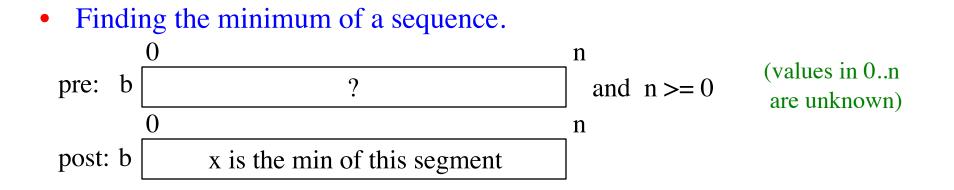
Example of an assertion about an sequence b. It asserts that:

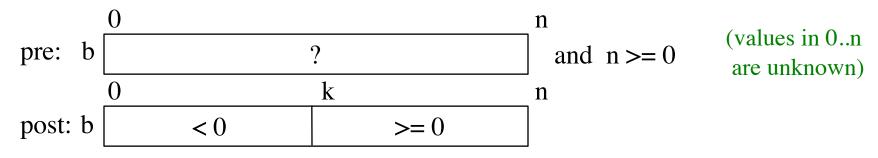
- 1. b[0..k–1] is sorted (i.e. its values are in ascending order)
- 2. Everything in b[0..k–1] is \leq everything in b[k..len(b)–1]

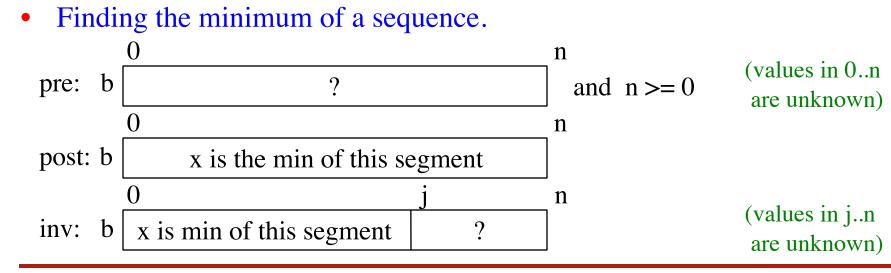
Given index h of the first element of a segment and index k of the element that follows that segment, the number of values in the segment is k - h.

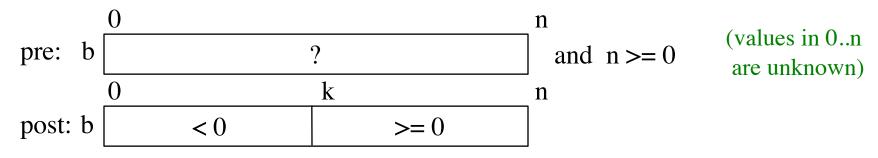
b[h ... k - 1] has k - h elements in it.

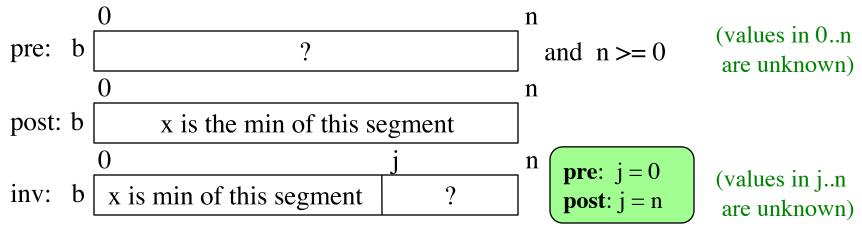

h h+1

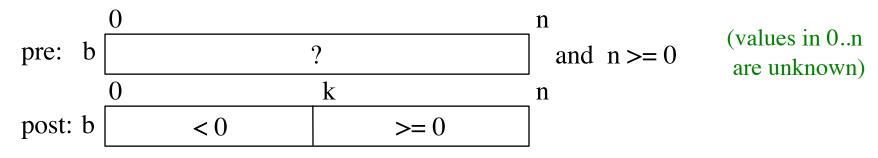

(h+1) - h = 1

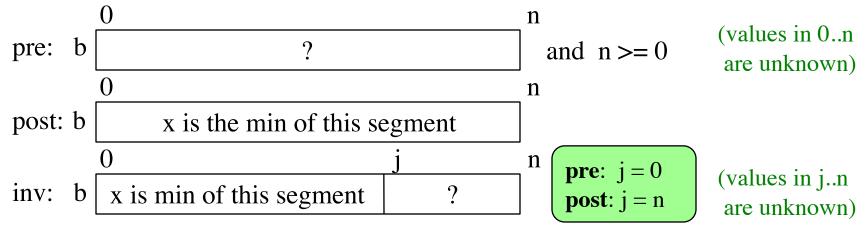

Developing Algorithms on Sequences


- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition
 - The invariant is true at the beginning and at the end
- The four loop design questions
 - 1. How does loop start (how to make the invariant true)?
 - 2. How does it stop (is the postcondition true)?
 - 3. How does the body make progress toward termination?
 - 4. How does the body keep the invariant true?

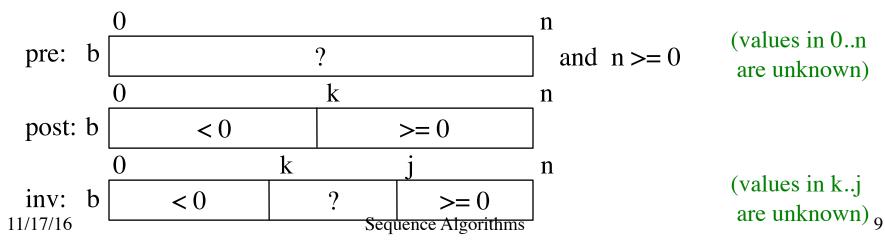

- Dutch national flag: tri-color
 - Sequence of 0..n-1 of red, white, blue "pixels"
 - Arrange to put reds first, then whites, then blues

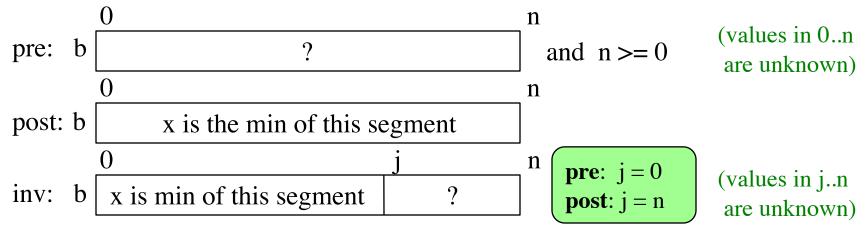


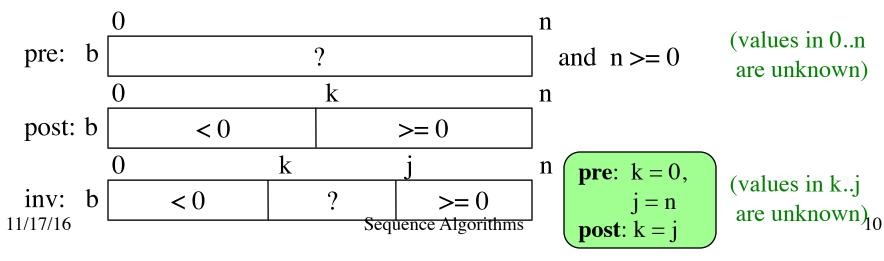


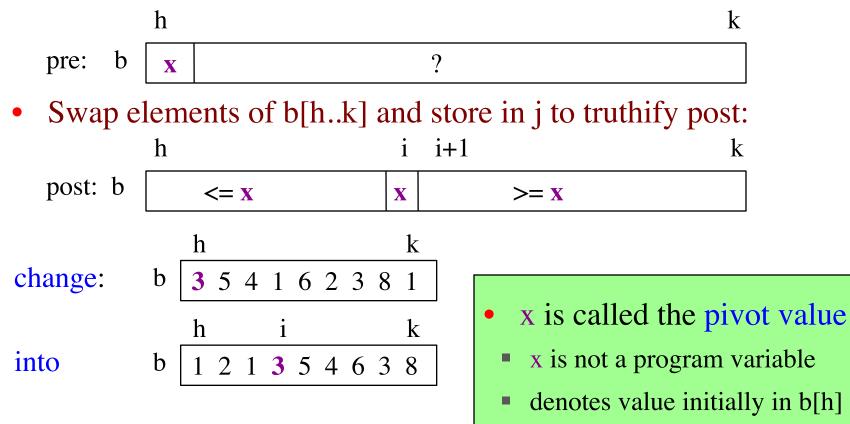


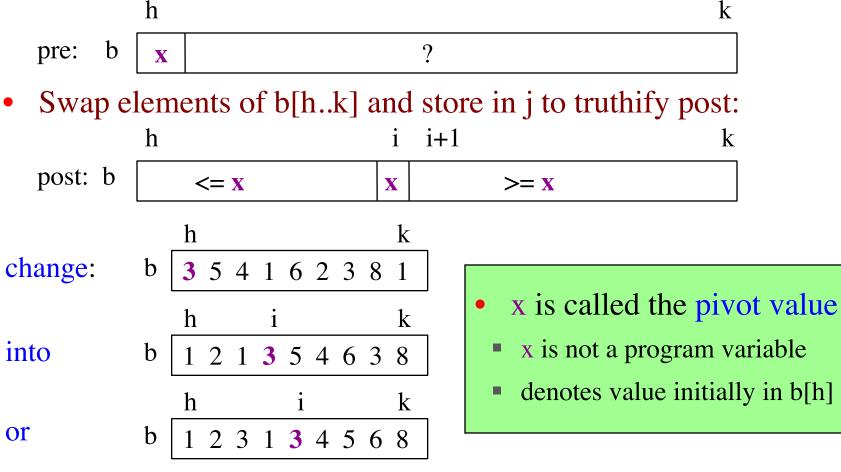
• Finding the minimum of a sequence.

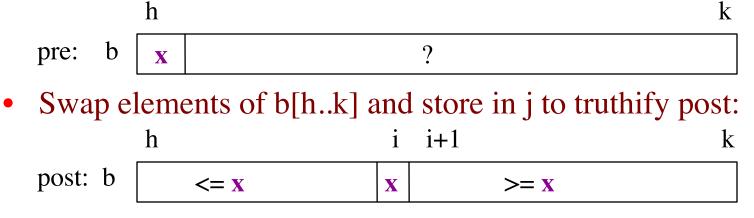







• Put negative values before nonnegative ones.




• Finding the minimum of a sequence.

- Agrees with precondition when i = h, j = k+1
- Agrees with postcondition when j = i+1

```
def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
# invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:
  if b[i+1] >= x:
                                partition(b,h,k), not partition(b[h:k+1])
     # Move to end of block.
                                Remember, slicing always copies the list!
     \_swap(b,i+1,j-1)
                                    We want to partition the original list
     j = j - 1
  else: # b[i+1] < x
     \_swap(b,i,i+1)
     i = i + 1
# post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i
```

```
def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
# invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:
   if b[i+1] >= x:
      # Move to end of block.
      \_swap(b,i+1,j-1)
      j = j - 1
   else: # b[i+1] < x
      \_swap(b,i,i+1)
      i = i + 1
# post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i
```

<= X		X	?			>= x					
h		i	i+	1		j		k			
1	2	3	1	5	0	6	3	8			

11/17/16

```
def partition(b, h, k):
                                                       <= x
                                                              X
                                                              i
"""Partition list b[h..k] around a pivot x = b[h]"""
                                                       h
                                                                  |i+1
i = h; j = k+1; x = b[h]
                                                           2
                                                        1
                                                              3 1 5 0
# invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
                                                                  i i+1
while i < j-1:
                                                       h
                                                              1
   if b[i+1] >= x:
                                                                  3 5 0 6 3 8
                                                       1 2
     # Move to end of block.
     \_swap(b,i+1,j-1)
     j = j - 1
   else: # b[i+1] < x
     \_swap(b,i,i+1)
     i = i + 1
# post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i
```

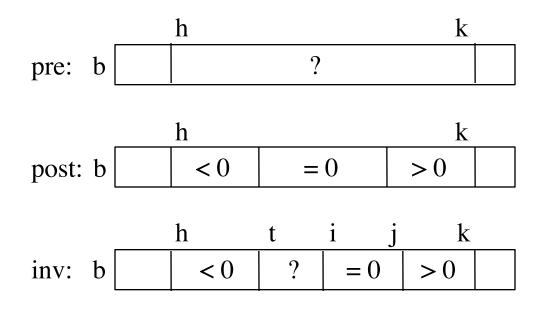
>= X

6 3 8

i

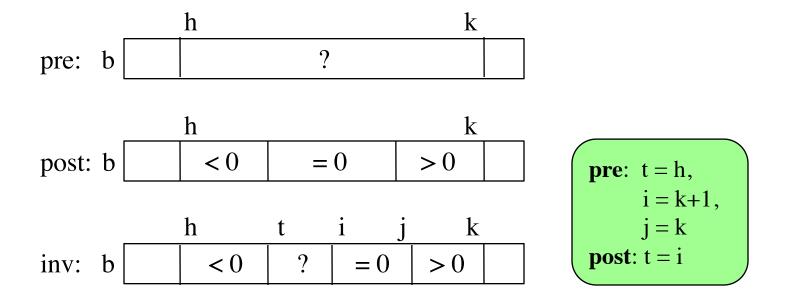
k

k


```
def partition(b, h, k):
                                                      <= x
                                                            Χ
                                                                            >= X
                                                            i
"""Partition list b[h..k] around a pivot x = b[h]"""
                                                     h
                                                                |i+1
                                                                                  k
i = h; j = k+1; x = b[h]
                                                                          6 3 8
                                                      1
                                                         2
                                                            3 1 5 0
# invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:
                                                     h
                                                                i i+1
                                                                           i
                                                                                  k
  if b[i+1] >= x:
                                                                   5 0 6 3 8
                                                                3
                                                      1 2
     # Move to end of block.
     \_swap(b,i+1,j-1)
                                                     h
                                                                                  k
                                                                1
     j = j - 1
                                                                    0 5 6 3 8
                                                      1 2 1
                                                                3
  else: # b[i+1] < x
     \_swap(b,i,i+1)
     i = i + 1
# post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i
```

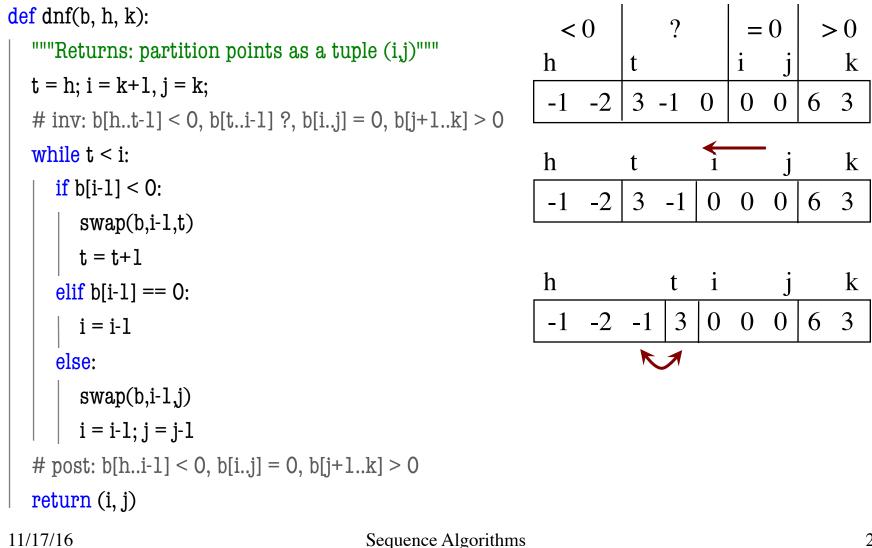
```
def partition(b, h, k):
                                                     <= x
                                                            X
                                                                           >= X
"""Partition list b[h..k] around a pivot x = b[h]"""
                                                           i
                                                               |i+1
                                                                                 k
                                                     h
i = h; j = k+1; x = b[h]
                                                               1 5 0
                                                                         6 3 8
                                                     1
                                                        2
                                                            3
# invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
                                                               i i+1
while i < j-1:
                                                     h
                                                                          i
                                                                                 k
  if b[i+1] >= x:
                                                                  5 0 6 3 8
                                                     1 2
                                                               3
     # Move to end of block.
     \_swap(b,i+1,j-1)
                                                     h
                                                                                k
                                                               1
     j = j - 1
                                                                      5 6 3 8
                                                     1 2 1
                                                               3
                                                                   0
  else: # b[i+1] < x
     \_swap(b,i,i+1)
     i = i + 1
                                                                   i j
                                                                                 k
                                                     h
# post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
                                                                  3 5 6 3 8
                                                        2 1
                                                     1
                                                               0
return i
```

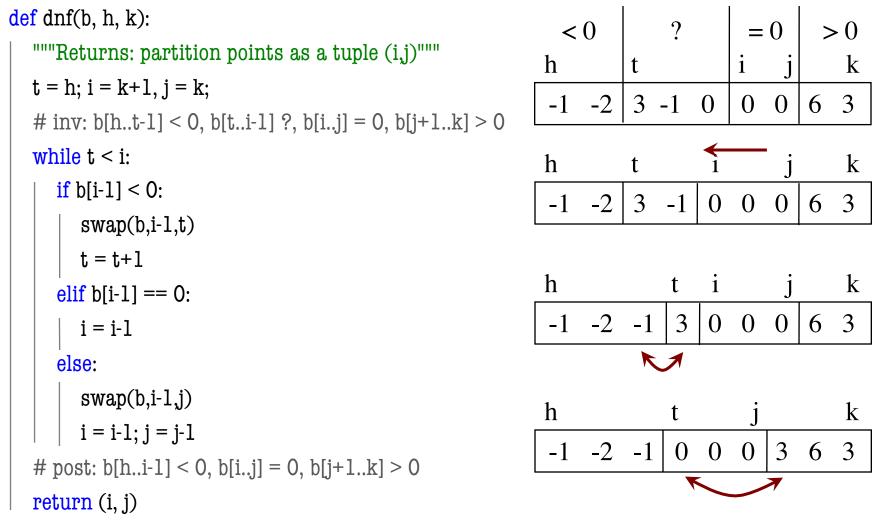
11/17/16


Dutch National Flag Variant

- Sequence of integer values
 - 'red' = negatives, 'white' = 0, 'blues' = positive
 - Only rearrange part of the list, not all

Dutch National Flag Variant


- Sequence of integer values
 - 'red' = negatives, 'white' = 0, 'blues' = positive
 - Only rearrange part of the list, not all




```
def dnf(b, h, k):
                                                                < 0
                                                                             ?
                                                                                      =0
                                                                                               >0
"""Returns: partition points as a tuple (i,j)"""
                                                              h
                                                                                     i
                                                                                                  k
                                                                        t
t = h; i = k+1, j = k;
                                                              -1 -2
                                                                                                 3
                                                                        3 -1 0
                                                                                         0
                                                                                             6
                                                                                     0
# inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:
   if b[i-1] < 0:
      swap(b,i-1,t)
      t = t+1
   elif b[i-1] == 0:
      i = i - 1
   else:
      swap(b,i-1,j)
      i = i-1; j = j-1
# post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)
```

11/17/16

def dnf(b, h, k):		< 0		?		= 0		>0	
"""Returns: partition points as a tuple (i,j)"""	h		t			i	i		k
t = h; i = k+1, j = k;	-1	-2	3	-1	0	0	0	6	3
# inv: $b[ht-1] < 0$, $b[ti-1]$?, $b[ij] = 0$, $b[j+1k] > 0$			1				<u> </u>		
while t < i:			t		1		j		k
if b[i-1] < 0:	-1	-2	3	-1	0	0	0	6	3
swap(b,i-1,t)							Į		
t = t+1									
elif b[i-1] == 0:									
i = i-1									
else:									
swap(b,i-1,j)									
i = i-1; j = j-1									
# post: b[hi-1] < 0, b[ij] = 0, b[j+1k] > 0									
return (i, j)									
11/17/16 Sequence Algorithms	-								~

11/17/16

Will Finish This Next Week