Horizontal Notation for Sequences

11/13/16

0 k len(b)
b I <= sorted l >=

Example of an assertion about an sequence b. It asserts that:
1. b[0.k-1] is sorted (i.e. its values are in ascending order)

2. Everything in b[0..k—1] is < everything in b[k..len(b)—1]

Developing Algorithms on Sequences

0 h k

* I |

Given index h of the first element of a segment and
index k of the element that follows that segment,
the number of values in the segment is k — h.

h h+1

(h+1)-h=1
blh ..k — 1] has k — h elements in it.

* Specify the algorithm by giving its precondition
and postcondition as pictures.
e Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition
= The invariant is true at the beginning and at the end
* The four loop design questions
1. How does loop start (how to make the invariant true)?

g

How does it stop (is the postcondition true)?

w

How does the body make progress toward termination?

»

How does the body keep the invariant true?

Generalizing Pre- and Postconditions

* Dutch national flag: tri-color
= Sequence of 0..n-1 of red, white, blue "pixels"

= Arrange to put reds first, then whites, then blues
0 n
pre: bI ? I (values in 0..n-1 are unknown)

0 n

Generalizing Pre- and Postconditions

* Finding the minimum of a sequence.

0 n)
re: bl > I P (values in 0..n
pre . and n>= are unknown)
0 n
post: bl X is the min of this segment I
0 i

- — - pre: j=0 (values in j.n
inv: bI x is min of this segment I ? I post: j=n are unknown)

post: bI reds I whites l blues I Make the red, . blue
sections initially empty:

0 i 1 n |° Rangei.i-1 has 0 elements
inv: bI rcdsl whitcsl ? l blues I * Main reason for this trick

Changing loop variables turns

invariant into postcondition.

* Put negative values before nonnegative ones.
0 n

I and n>=0

(values in 0..n
are unknown)

(values ink..j
are unknown)

Partition Algorithm

¢ Given a sequence b[h. k] with some value x in b[h]:

h k
pre: b I X I 9 I
¢ Swap elements of b[h..k] and store in j to truthify post:
h i+l k
post: b | <—x | x| >= X |
h k
change: b|354162381
h ; « |® xis called the pivot value
into bl121354638 = X is not a program variable
h i k = denotes value initially in b[h]

or bl123134568

Partition Algorithm

¢ Given a sequence b[h. k] with some value x in b[h]:

h k

pre: b I X I ? I
e Swap elements of b[h..k] and store in j to truthify post:
h i+l k

post: b | <=x | x] >=x |

h i j k

inv: b I <=x I xI ? I >=x I

e Agrees with precondition when i =h, j =k+1
e Agrees with postcondition when j = i+1

Partition Algorithm Implementation

def partition(b, b, k):

"Partition list b[h..k] around a pivot x = bh]""
i=h;j=k+1;x=b[h]
invariant: b[h..+-1] < x, bli] = x, blj.k] >=x
whilei<jl:
ifbli+1] >=x: partition(b,h k), not partition(b[h:k+1])
Move to end of block. P . .
Remember, slicing always copies the list!
_swap(b+151) > SCIng diways copies the
j=j-1 We want to partition the original list
else: #D[i+1]<x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, bli] is x, and bli+1.k] >=x
return i

11/13/16

Partition Algorithm Implementation

def partition(b, h, k): <=x|x 9 >=x
"Partition list b[h..k] around a pivot x = b[h]"" h i |i+l j k
1=h;j=k+1;x=bln] [12]3]1 5 o]s 3 3]
invariant: b[h..i-1] < x, bli] = x, b[j.k] >=x
while i <j1:

if bli+1] >=x:
Move to end of block.
_swap(b,i+1j-1)
j=j-1
else: #Dbli+l] <x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is x, and b[i+1.k] >=x
return i

Partition Algorithm Implementation

def partition(b, b, k): <=x|x ? >=X
"""Partition list b(h..k] around a pivot x = b{h]"" h ifi+l j k
i=h;j=k+1;x=bih] [1 23]t 5 ofs 3
invariant: bh..i-1] <x, b[i] = x, b[j.k] >=x
while i <J1: h il k
if bli+1] >= x: [12 %ﬂ 5 06 3 3
Move to end of block.
_swap(b,i+1,j-1) h i i K
=L IENELERER
else: #D[i+1]<x
| _swap(ii+1) v
i=i+1 h i k
#post: b1 < x, blil isx, and bli+ LK >=x [1 2 1 0]3] 5 6 3 8]

return i v

Dutch National Flag Variant

* Sequence of integer values
= ‘red’ = negatives, ‘white’ =0, ‘blues’ = positive
= Only rearrange part of the list, not all

h k

pre: bI l ? I I

h
post:bl l<0 I =0 I >0| I

h t ik
inv: b | <o] 2] =of >0 | post: t=i

Dutch National Flag Algorithm

def dnf(b, h, k):
""Returns: partition points as a tuple (ij)"" h
t=hi=k+lj=k I’
inv: b[h..t-1] <0, b[t..i-1] 2, b[i.j] = 0, b[j+1..k] > 0
while t <i:
if b[i-1] < 0:
swap(b,i-1,t)
t=t+1
elif b[i-1] == 0:
| i=11
else:
swap(b,i-1,))
i=ilj=j1
post: blh..i-1] < 0, bli.j] = 0, b[j+1..k] > 0
return (i, j)

<0 ? =0 >0
i i k
2]3 -1 0o o6 3]

Dutch National Flag Algorithm

def dnf(b, b, k: <0 L ekl
""Returns: partition points as a tuple (i,)"" h i k
b=mizklj=k 1 2[5 1 ofo ofs 5]
#nv: blh.4-1] < 0, bit. 1] 2, bli.f] = 0, bj+1.K] > 0 <
while t <1 h ! ok
if bfi-1] < O L 2[5 1o o o6 3
swap(b,i-1,t)
t=t+1
elif b[i-1] == 0: - T j)
| i=11 [2]3]0 0 ofs 3]
else: l
swap(b,i-1,)) h L J k
i=iLj=51 L2 fooofs 6 3

post: bfh..i-1] <0, b[i.j] = 0, b[j+1..k] > 0

return (i, j)

