
11/13/16

1

A Standard GUI Application

Update display/view
No change to objects

Animates the
application,
like a movie

Check for user input
Process user input
Update the objects

Must We Write this Loop Each Time?

while program_is_running:
Get information from mouse/keyboard
Handled by OS/GUI libraries

Your code goes here
application.update()

Draw stuff on the screen
Handled by OS/GUI libraries

Custom Application class

Method call
(for loop body) • Write loop body

in an app class.
• OS/GUI handles

everything else.

Loop Invariants Revisited

Normal Loops

x = 0
i = 2
x = sum of squares of 2..i
while i <= 5:

x = x + i*i
i = i +1

x = sum of squares of 2..5

Application

while program_running:
Get input
Your code called here
application.update()
Draw

Properties of
“external” vars

What are the
“external” vars?

Application is an object.
It will have attributes!

Attribute Invariants = Loop Invariants

• Attributes are a way to
store value between calls
§ Not part of call frame
§ Variables outside loop

• An application needs
§ Loop attributes
§ Initialization method

(for loop, not __init__)
§ Method for body of loop

• Attribute descriptions,
invariants are important

Constructor
game = GameApp(…)
…
game.start() #Loop initialization
inv: game attributes are …
while program_running:

Get input
Your code goes here
game.update(time_elapsed)
game.draw()

post: game attributes are …

Example: Animation
class Animation(game2d.GameApp):

"""Application to an ellipse in a circle."""

def start(self):
"""Initializes the game loop."""
…

def update(self,dt):
"""Changes the ellipse position."""
…

def draw(self):
"""Draws the ellipse"""
…

See animation.py

Loop initialization
Do NOT use __init__

Loop body

Use method draw()
defined in GObject

Parent class that
does hard stuff

What Attributes to Keep: Touch

• Attribute touch in GInput
§ The mouse press position
§ Or None if not pressed
§ Use self.input.touch inside your

subclass definition
• Compare touch, last position

§ last None, touch not None:
Mouse button pressed

§ last not None, touch None:
Mouse button released

§ last and touch both not None:
Mouse dragged (button down)

See touch.py

Previous
Touch

Current
Touch

Line segment = 2 points

11/13/16

2

State: Changing What the Loop Does

• State: Current loop activity
§ Playing game vs. pausing
§ Ball countdown vs. serve

• Add an attribute state
§ Method update() checks state
§ Executes correct helper

• How do we store state?
§ State is an enumeration;

one of several fixed values
§ Implemented as an int
§ Global constants are values

See state.py

State ANIMATE_CIRCLE

State ANIMATE_HORIZONTAL

Designing States

• Each state has its own set of invariants.
§ Drawing? Then touch and last are not None
§ Erasing? Then touch is None, but last is not

• Need rules for when we switch states
§ Could just be “check which invariants are true”
§ Or could be a triggering event (e.g. key press)

• Need to make clear in class specification
§ What are the invariants for each state?
§ What are the rules to switch to a new state?

Triggers: Checking Click Types

• Double click = 2 fast clicks
• Count number of fast clicks

§ Add an attribute clicks
§ Reset to 0 if not fast enough

• Time click speed
§ Add an attribute time
§ Set to 0 when mouse released
§ Increment when not pressed

(e.g. in loop method update())
§ Check time when next pressed

See touch.py

time

pressed

released pressed

released

Is it fast enough?

Designing Complex Applications

• Applications can become
extremely complex
§ Large classes doing a lot
§ Many states & invariants
§ Specification unreadable

• Idea: Break application
up into several classes
§ Start with a “main” class
§ Other classes have roles
§ Main class delegates work

MainApp

Animation

See subcontroller.py

§ Processes input
§ Determines state

§ Animates (only)

Calls the methods of

Model
• Defines and

manages the data
• Responds to the

controller requests

View
• Displays the model

to the app user
• Provides user input

to the controller

Controller
• Updates model in

response to events
• Updates view with

model changes

Model-View-Controller Pattern

Calls the
methods or
functions of

Division
can apply
to classes

or modules

Model
Subclasses of GObject
• GEllipse, GImage, …
• Often more than one

View
Class GView, GInput
• Do not subclass!
• Part of GameApp

Controller
Subclass of

GameApp

Model-View-Controller in CS 1110

Classes in
game2d.py

Method draw
in GObject

Attribute view
(inherited)

Other attributes
(defined by you)

