Beyond Sequences: The while-loop

while <condition>:

statement 1 repetend or body

statement n

* Relationship to forloop

Broader notion of
“still stuff to do”

Must explicitly ensure
condition becomes false

You explicitly manage
what changes per iteration

While-Loops and Flow

print 'Before while'

count = 0

i=0

whilei<3:
print 'Start loop '+str(i)
count = count + i
i=i+1
print 'End loop '

print 'After while'

Output:

Before while
Start loop O
End loop
Start loop 1
End loop
Start loop 2
End loop
After while

while Versus for

process range b..c-1
for k in range(b,c)
process k

process range b..c-1
k=b
while k < c:

process k

[Must remember to increment k=k+1

process range b..c
for k in range(b,c+1)
process k

process range b..c

k=D

while k <=c:
process k
k=k+1

Note on Ranges

° m..n is a range containing n+1-m values

= 2.5 contains 2,3,4,5.

= 2.4 contains 2,3,4.

= 2.3 contains 2,3.

= 2.2 contains 2.
2..

I contains ??7?

Contains 5+1 — 2 = 4 values
Contains 4+1 — 2 = 3 values
Contains 3+1 — 2 = 2 values

Contains 2+1 — 2 = 1 values

 The notation m..n, always implies that m <= n+1

= So you can assume that even if we do not say it

= If m = n+1, the range has 0 values

Patterns for Processing Integers

range a..b-1
i=a
while i{Sb:
process integer I
i=i+ 1

range c..d
i=c
while i :
process integer I
i=i+1

while Versus for

store in count # of '/'s in String s
count =0

i=0

while i < len(s):

if s[i] =="/"

| count= count + 1

=i+l

count is # of '/'s in s[0..s.length()-1]

Store in double var. v the sum
#1/1 +1/2+.+1/n
v=0; # call this 1/0 for today
i=0
whilei<=n:

v=v+10/i

i=i+l
#v=1/1 +1/2+.+1/n

table of squares to N
seq =]

n = floor(sqrt(N)) + 1
for k in range(n):

| seq.append(k*k)

table of squares to N

seq =]

k=0

while k*k <= N
seg.append(k*k)
k=k+1

A for-loop requires that
you know where to stop
the loop ahead of time

A while loop can use
complex expressions to
check if the loop is done

while Versus for

Fibonacci numbers:

Fo=1
Fi=1
Fp=Fo, 1+ F,»
Table of n Fibonacci nums # Table of n Fibonacei nums
fib =11, 1] fib=11, 1]
for k in range(2,n): while len(fib) < n:

| fib.append(fib[-1] + fib[-2]) | fib.append(fibl-1] + fib[-R])

Sometimes you do not use Do not need to have a loop
the loop variable at all variable if you don’t need one

11/8/16

Cases to Use while

[Great for when you must modify the loop variable]

Remove all 3's from list ¢ # Remove all 3's from list ¢
i=0 while 3 in t:
while i <len(t): | t.remove(3)
1o &'s in t[0..i-1]
if t(g.lll_t_' ’ The stopping condition is not
|) e Y Stopping a num'ericz_ll.counter this time.
€ S.e~ point keeps Simplifies code a lot.
| i+= 1

changing.

Cases to Use while

e Want square root of ¢ def sqrt(c):
* Make poly f(x) = x-¢ """Return: square root of ¢
Uses Newton's method

= Want root of the pol .
(x such that f{x) iEO)y Pre: ¢ >= 0 (in or float)™"

. s X=0/3
Use Newton’s Method # Check for convergence
" xo= GUESS (c/277) while abs(x*x - ¢) > le-6:
" Kt = X = o) lf () # Get Xp+1 from X,
=X — (XpXp-C)/(2xp) x=x/2+¢c/ (Z*X)
= Xp— X,/2 + ¢/2x,

=x,/2 + ¢/2x, return x

= Stop when x, good enough

Recall Lab 9

Welcome to CS 1110 Blackjack.
Rules: Face cards are 10 points. Aces are 11 points.
All other cards are at face value.

go?l‘shagd: How do we design a complex
ot bpades while-loop like this one?
10 of Clubs

Dealer's hand:

5 of Clubs Play until player

stops or busts

Type h for new card, s to stop:

Some Important Terminology

e assertion: true-false statement placed in a program to
assert that it is true at that point

= Can either be a comment, or an assert command

* invariant: assertion supposed to "always" be true
= If temporarily invalidated, must make it true again

= Example: class invariants and class methods

¢ loop invariant: assertion supposed to be true before
and after each iteration of the loop

* ijteration of a loop: one execution of its body

Preconditions & Postconditions

n
12345678

precondition
- T
#x =sumof 1.n-1 x contains the sum of these (6)
X=X+n
n=n+1

#x= sumof 1.n-1

n
12345678

postcondition

o Precondition: assertion x contains the sum of these (10)

placed before a segment

Relationship Between Two

 Postcondition: assertion
placed after a segment

If precondition is true, then
postcondition will be true

