
Programming
with Subclasses

Lecture 21

Announcements for Today

Reading
• Today: See reading online
• Tuesday: Chapter 7

Assignments
• A4 is still being graded

§ Will be done tomorrow

• But I looked at surveys
§ People generally liked it
§ Avg Time: 8.5 hrs
§ STDev: 4 hrs, Max: 50 hrs

• A5 is due tonight at midnight
• Continue working on A6

§ Finish Cluster by Sunday
11/5/15 Programming with Subclasses 2

• Prelim, Nov 10th 7:30-9:00
§ Material up to Today
§ Review has been posted
§ Recursion + Loops + Classes

• S/U Students are exempt
• Conflict with Prelim time?

§ LAST DAY TO SUBMIT

Recall: Overloading Multiplication
class Fraction(object):

"""Instance attributes:
numerator [int]: top
denominator [int > 0]: bottom """

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python
converts to

Operator overloading uses
method in object on left.

11/5/15 Programming with Subclasses 3

Recall: Overloading Multiplication
class Fraction(object):

"""Instance attributes:
numerator [int]: top
denominator [int > 0]: bottom """

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

Can only multiply fractions.
But ints “make sense” too.

11/5/15 Programming with Subclasses 4

Dispatch on Type

• Types determine behavior
§ Diff types = diff behavior
§ Example: + (plus)

• Addition for numbers
• Concatenation for strings

• Can implement with ifs
§ Main method checks type
§ “Dispatches” to right helper

• How all operators work
§ Checks (class) type on left
§ Dispatches to that method

class Fraction(object):
…
def __mul__(self,q):

"""Returns: Product of self, q
Precondition: q a Fraction or int"""
if type(q) == Fraction:

return self._mulFrac(q)
elif type(q) == int:

return self._mulInt(q)
…
def _mulInt(self,q): # Hidden method

return Fraction(self.numerator*q,
self.denominator)

11/5/15 Programming with Subclasses 5

Dispatch on Type

• Types determine behavior
§ Diff types = diff behavior
§ Example: + (plus)

• Addition for numbers
• Concatenation for strings

• Can implement with ifs
§ Main method checks type
§ “Dispatches” to right helper

• How all operators work
§ Checks (class) type on left
§ Dispatches to that method

class Fraction(object):
…
def __mul__(self,q):

"""Returns: Product of self, q
Precondition: q a Fraction or int"""
if type(q) == Fraction:

return self._mulFrac(q)
elif type(q) == int:

return self._mulInt(q)
…
def _mulInt(self,q): # Hidden method

return Fraction(self.numerator*q,
self.denominator)

11/5/15 Programming with Subclasses 6

Classes are main way to handle
“dispatch on type” in Python.
Other languages have other

ways to support this (e.g. Java)

class Fraction(object):
"""Instances are normal fractions n/d
Instance attributes:

numerator [int]: top
denominator [int > 0]: bottom """

class BinaryFraction(Fraction):
"""Instances are fractions k/2n

Instance attributes are same, BUT:
numerator [int]: top
denominator [= 2n, n ≥ 0]: bottom """

def __init__(self,k,n):
"""Make fraction k/2n """
assert type(n) == int and n >= 0
Fraction.__init__(self,k,2 ** n)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

__mul__ has precondition
type(q) == Fraction

11/5/15 Programming with Subclasses 7

Another Problem: Subclasses

The isinstance Function

• isinstance(<obj>,<class>)
§ True if <obj>’s class is same

as or a subclass of <class>
§ False otherwise

• Example:
§ isinstance(e,Executive) is True
§ isinstance(e,Employee) is True
§ isinstance(e,object) is True
§ isinstance(e,str) is False

• Generally preferable to type
§ Works with base types too!

11/5/15 Programming with Subclasses 8

e id4

id4
Executive

_salary 0.0

_start 2012

_name 'Fred'

_bonus 0.0

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

11/5/15 Programming with Subclasses 9

A: True
B: False
C: Error
D: I don’t know

e id5

id5
Employee

_salary 50k

_start 2012

_name 'Bob'

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

11/5/15 Programming with Subclasses 10

A: True
B: False
C: Error
D: I don’t know

object

Executive

Employee

→ means “extends”
or “is an instance of”

Correct

Fixing Multiplication
class Fraction(object):

"""Instance attributes:
numerator [int]: top
denominator [int > 0]: bottom"""

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert isinstance(q, Fraction)
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python
converts to

Can multiply so long as it
has numerator, denominator

11/5/15 Programming with Subclasses 11

Error Types in Python

def foo():
assert 1 == 2, 'My error'
…

>>> foo()
AssertionError: My error

def foo():
x = 5 / 0
…

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

11/5/15 Programming with Subclasses 12

Class Names

Error Types in Python

def foo():
assert 1 == 2, 'My error'
…

>>> foo()
AssertionError: My error

def foo():
x = 5 / 0
…

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

11/5/15 Programming with Subclasses 13

Class Names

Information about an error
is stored inside an object.
The error type is the class
of the error object.

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/5/15 Programming with Subclasses 14

BaseException

StandardError

AssertionError

Exception

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

__init__(msg)
__str__()
…

BaseException

Exception(BE)

StdError(E)

AssError(SE)

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/5/15 Programming with Subclasses 15

BaseException

StandardError

AssertionError

Exception

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

__init__(msg)
__str__()
…

BaseException

Exception(BE)

StdError(E)

AssError(SE)

All of these are
actually empty!

Why?

Python Error Type Hierarchy

11/5/15 Programming with Subclasses 16

Exception

StandardErrorSystemExit

AssertionError ArithmeticErrorAttributeError ValueErrorTypeErrorIOError …

ZeroDivisionError OverflowError …

Argument has
wrong type

(e.g. float([1]))

Argument has
wrong value

(e.g. float('a'))

Why so many error types?http://docs.python.org/
library/exceptions.html

Recall: Recovering from Errors

• try-except blocks allow us to recover from errors
§ Do the code that is in the try-block
§ Once an error occurs, jump to the catch

• Example:
try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

might have an error

executes if have an error

11/5/15 17Programming with Subclasses

Errors and Dispatch on Type

• try-except blocks can be restricted to specific errors
§ Doe except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except ValueError:
print 'Hey! That is not a number!'

Only recovers ValueError.
Other errors ignored.

11/5/15 18Programming with Subclasses

May have ValueError

May have IOError

Errors and Dispatch on Type

• try-except blocks can be restricted to specific errors
§ Doe except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except IOError:
print 'Check your keyboard!'

Only recovers IOError.
Other errors ignored.

11/5/15 19Programming with Subclasses

May have ValueError

May have IOError

Creating Errors in Python

def foo(x):
assert x < 2, 'My error'
…

def foo(x):
if x >= 2:

m = 'My error'
raise AssertionError(m)

…

11/5/15 Programming with Subclasses 20

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for
preconditions, however
§ Compact and easy to read

Identical

Raising and Try-Except

def foo():
x = 0
try:

raise StandardError()
x = 2

except StandardError:
x = 3

return x

• The value of foo()?

11/5/15 Programming with Subclasses 21

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
x = 0
try:

raise StandardError()
x = 2

except StandardError:
x = 3

return x

• The value of foo()?

11/5/15 Programming with Subclasses 22

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Raising and Try-Except

def foo():
x = 0
try:

raise StandardError()
x = 2

except Exception:
x = 3

return x

• The value of foo()?

11/5/15 Programming with Subclasses 23

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
x = 0
try:

raise StandardError()
x = 2

except Exception:
x = 3

return x

• The value of foo()?

11/5/15 Programming with Subclasses 24

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Raising and Try-Except

def foo():
x = 0
try:

raise StandardError()
x = 2

except AssertionError:
x = 3

return x

• The value of foo()?

11/5/15 Programming with Subclasses 25

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
x = 0
try:

raise StandardError()
x = 2

except AssertionError:
x = 3

return x

• The value of foo()?

11/5/15 Programming with Subclasses 26

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Python uses isinstance
to match Error types

Creating Your Own Exceptions
class CustomError(StandardError):

"""An instance is a custom exception"""
pass

This is all you need
§ No extra fields
§ No extra methods
§ No constructors
Inherit everything

11/5/15 27Programming with Subclasses

Only issues is choice of
parent Exception class.
Use StandardError if
you are unsure what.

Errors and Dispatch on Type

• try-except can put the error in a variable
• Example:

try:
input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except ValueError as e:
print e.message
print 'Hey! That is not a number!'

11/5/15 28Programming with Subclasses

Some Error subclasses
have more attributes

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/5/15 Programming with Subclasses 29

class Fraction(object):
"""Instance attributes:

numerator [int]: top
denominator [int > 0]: bottom"""

…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/5/15 Programming with Subclasses 30

class Fraction(object):
"""Instance attributes:

numerator [int]: top
denominator [int > 0]: bottom"""

…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(q,'numerator') and

hasattr(q,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/5/15 Programming with Subclasses 31

class Fraction(object):
"""Instance attributes:

numerator [int]: top
denominator [int > 0]: bottom"""

…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(q,'numerator') and

hasattr(q,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Compares anything with
numerator & denominator

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/5/15 Programming with Subclasses 32

class Fraction(object):
"""Instance attributes:

numerator [int] : top
denominator [int > 0]: bottom"""

…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(other,'numerator') and

hasattr(other,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

How to properly implement/use typing
is a major debate in language design
• What we really care about is

specifications (and invariants)
• Types are a “shorthand” for this
Different typing styles trade ease-of-use
with overall program robustness/safety

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

class Employee(object):
"""An Employee with a salary"”"
…
def __eq__(self,other):

if (not (hasattr(other,'name') and
hasattr(other,'start') and
hasattr(other,'salary'))

return False
return (self.name == other.name and

self.start == other.start and
self.salary == other.salary)

11/5/15 Programming with Subclasses 33

