Lecture 19

Using Classes Effectively



Announcements

Reading Regrades

e Tuesday: Chapter 18 * Today is last day to request
= Show it to me after class

= [ will verify if it 1s valid
* Then request regrade in CMS

e Thursday reading online

Assignments
e Prelim,Nov 12t 7:30-9:00
e A4 due tonight at Midnight = Material up to November 5
= 10 pts per day late = Recursion + Loops + Classes
= Consultants available tonight e S/U Students are exempt
e A5 & A6 posted tOMOITOW e (Conflict with Prelim time?
= See included micro-deadlines * Prelim 2 Conflict on CMS

10/29/15 Using Classes Effectively



DESigning Types From first
day of class!

. _l/
* Type: set of values and the operations on them

" int: (set: integers; ops: +,—, *,/, ...)
= Time (set: times of day; ops: time span, before/after,...)
= Worker (set: all possible workers; ops: hire,pay,promote,...)

= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)

e To define a class, think of a real type you want to make
= Python gives you the tools, but does not do it for you
= Physically, any object can take on any value
= Discipline is required to get what you want

10/29/15 Using Classes Effectively



Making a Class into a Type

1. Think about what values you want in the set
* What are the attributes? What values can they have?

2. Think about what operations you want
= This often influences the previous question
 To make (1) precise: write a class invariant
= Statement we promise to keep true after every method call
* To make (2) precise: write method specifications
= Statement of what method does/what it expects (preconditions)

* Write your code to make these statements true!

10/29/15 Using Classes Effectively 4



Planning out a Class

class Time(object):

""Instances represent times of day. Class Invariant
Instance Attributes: o States what attributes are present
h‘?‘”’- h(?ur of day [in .1n 9"25] and what values they can have.
min: minute of hour [int in 0..59]"™" ,
A statement that will always be
def _init_ (self, hour, min): true of any Time instance.

""The time hour:min.
Pre: hour in 0..23; min in 0..59""

def increment(self, hours, mins): Method Specification

""Move this time <hours> hours
and <mins> minutes into the future. :|, States what the method does.

Pre: hours is int >= 0; mins in 0..59™ Gives preconditions stating what

is assumed true of the arguments.

def isPM(self):
"""Returns: this time is noon or later."



Planning out a Class

class Rectangle(object):

""Instances represent rectangular
regions of the plane.

Instance Attributes: Class Invariant

t: y coordinate of top edge [float] States what attributes are present
I: x coordinate of left edge [float] — | and what values th h
b: y coordinate of bottom edge [float] and what values they can have.

r: x coordinate of right edge [float] A statement that will always be
For all Rectangles, | <=rand b<=t"" _J |true of any Rectangle instance.

def __init_ (self, t, 1, b, r):
"""The rectangle [1, r] x [t, b]

Pre: args are floats; 1 <=r; b <=t"" — -
Method Specification

""Return: area of the rectangle."" States what the method does.

def area(self): }

Gives preconditions stating what
def intersection(self, other): is assumed true of the arguments.

""Return: new Rectangle describing
intersection of self with other."



Planning out a Class

class Hand(object): )
"""Instances represent a hand in cards. Class Invariant
Instance Attributes: States what attributes are present
cards: cards in the hand [list of card] } and what values they can have.
This list is sorted according to the A statement that will always be
ordering defined by the Card class."" true of any Rectangle instance.

def __init__ (self, deck, n):

"""DI’&W a ha;nd Of n ca,rds,
Pre: deck is a list of >= n cards™

def isFullHouse(self): Method Specification

"""Return: True if this hand is a full States what the method does.
house; False otherwise"" _ . :
Gives preconditions stating what

def discard(self, k): is assumed true of the arguments.

"""Discard the k-th card."™

10/29/15 Using Classes Effectively



Implementing a Class

e All that remains 1s to fill in the methods. (All?!)

* When implementing methods:
1. Assume preconditions are true
2. Assume class invariant 1s true to start
3. Ensure method specification 1s fulfilled

4. Ensure class invariant 1s true when done
e Later, when using the class:

= When calling methods, ensure preconditions are true

= If attributes are altered, ensure class invariant 1s true

10/29/15 Using Classes Effectively



Implementing an Initializer

def __init__ (self, hour, min):
""The time hour:min.
Pre: hour in 0..23; min in 0..59™" This is true to start

self.hour = hour
self.min = min

You put code here

N

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

This should be true
at the end

10/29/15 Using Classes Effectively 9



Implementing a Method

~

Instance variables:
hour: hour of day [int in 0..23]

min: minute of hour [int in 0..59 This 1s true to start

N What we are supposed
def inecrement(self, hours, mins): to accomplish
"""Move this time <hours> hours / b
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59"™ {— This 1s also true to start

self.min = self.min + mins ‘)

self.hour = self.hour + hours [ You put code here

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59

This should be true
at the end 10



Implementing a Method

~

Instance variables:
hour: hour of day  [int in 0..23]

min: minute of hour [int in 0..59 This 1s true to start

N What we are supposed
def inecrement(self, hours, mins): to accomplish
"""Move this time <hours> hours / b
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59"™ {— This 1s also true to start

self. min = self. min + mins
self.hour = (self.hour + hours +
self. min / 60)

self. min = self.min % 60 You put code here
self.hour = self.hour % 24

~ 7

Instance variables:
hour: hour of day  [int in 0..23]
min: minute of hour [int in 0..59

This should be true
at the end 11



Role of Invariants and Preconditions

They both serve two purposes

= Help you think through your
plans in a disciplined way

= Communicate to the user®* how
they are allowed to use the class

Provide the interface of the class

" Interface btw two programmers

" interface btw parts of an app

e Important concept for making
large software systems

= Will return to this idea later

* ...who might well be you!

inetereface |'intor fasl noun

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.

* chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its
air/liquid interface.

2. Computing a device or program
enabling a user to communicate with a
computer.

* adevice or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.

— The Oxford American Dictionary




Implementing a Class

e All that remains 1s to fill in the methods. (All?!)

* When implementing methods:

1. Assume precondi ‘ ~
2. Assume class inyy Easy(ish) if we are the user.

3. Ensure method s But what if we aren’t?

4. Ensure class inva

» Later, when using the class: A

= When calling methods, ensure preconditions are true

= If attributes are altered, ensure class invariant 1s true

10/29/15 Using Classes Effectively 13



Recall: Enforce Preconditions with assert

def anglicize(n):

"""Returns: the anglicization of int n.
Precondition: n an int, 0 <n < 1,000,000"™
assert type(n) == int, str(n)+' is not an int'
a,ssert{O <nandn < IOOOOOO] [str(n)+' is out of Pa.nge']
# Implement od here...

r

Check (part of)

the precondition when precondition violated

[ (Optional) Error message

\_

10/29/15 Using Classes Effectively 14



Enforce Method Preconditions with assert

class Time(object):
"""Instances represent times of day."""

def __init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..23; min in 0..59"™

assert type(hour) == int

assert O <= hour and hour < 24
assert type(min) == int

assert O <= min and min < 60

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >=0; mins in 0..59"""
assert type(hour) == int
assert type (min) == int
assert hour >= 0 and
assert O <= min and min < 60

Instance Attributes:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

—

Initializercreates/initializes all
of the instance attributes.

Asserts 1n initializer guarantee the
initial values satisfy the invariant.

Asserts in other methods enforce
the method preconditions.

15



Hiding Methods From Access

e Put underscore in front of a class Fraction(object):
method will make it hidden ""Instance attributes:
= Will not show up in help() numerator: top  [int]

= But it is still there... | HIDDQdenomina,tor: bottom [int > O]™™"

e Hidden methods def” is_denominator(self,d):

= (Can be used as helpers "
inside of the same class

""Return: True if d valid denom"""
return type(d) ==intandd >0

= But it is bad style to use Helper
them outside of this class def _init_ (selfn=0,d=1) method
e (Can do same for attributes assert self, is_denominator(d)
= Underscore makes it hidden self.numerator = n

= Do not use outside of class self.denominator = d

10/29/15 Using Classes Effectively 16



Enforcing Invariants

class Fraction(object): e Idea: Restrict direct access
"""Instance attributes: = Only access via methods
numerator: top [int] = Use asserts to enforce them

denominator: bottom|[int > 0]| e Examples:

def getNumerator(self):
"""Returns: numerator™"

return self.numerator
e These are just comments! def setNumerator(self,value):
>>> p = Fraction(1,2) ""Sets numerator to value™"

assert type(value) == int
self.numerator = value

>>> p.numerator = 'Hello'

e How do we prevent this?

10/29/15 Using Classes Effectively 17



Data Encapsulation

e Idea: Force the user to only use methods

* Do not allow direct access of attributes

Setter Method Getter Method

e Used to change an attribute Used to access an attribute

* Replaces all assignment e Replaces all usage of
statements to the attribute attribute in an expression
e Bad: e Bad:
>>> f.numerator = 5 >>> x = 3*f.numerator
e Good: e Good:
>>> f setNumerator(d) >>> x = §*f.getNumerator()

10/29/15 Using Classes Effectively 18



Data Encapsulation

class Fraction(object):
""Tnstance attributes:

Do this for all of

_numerator: top  [int] your attributes

_denominator: bottom [int > 0]"""
Getter
def getDenomenator(self):

"""Returns: numerator attribute™"

return self._denomenator e The underscore means
“should not access the

def setDenomenator(self, d): attribute directly.”

Naming Convention

Setter

i

"""Alters denomenator to be d
Pre: d is an int > 0"

assert type(d) == int } Precondition is same
assert 0 <d as attribute invariant.

self. denominator = d

10/29/15 Using Classes Effectively



Mutable vs. Immutable Attributes

Mutable Immutable
e (Can change value directly e (Can’tchange value directly
= If class invariant met = May change “behind scenes”
= Example: t.color = Example: t.x
e Has both getters and setters * Has only a getter
= Setters allow you to change = No setter means no change
= Enforce invariants w/ asserts = Getter allows limited access

CMay ask you to differetiate on the exam)

10/29/15 Using Classes Effectively 20



Structure of a Proper Python Class

class Fraction(object): | Docstring describing class
"""Instances represent a Fraction

Attributes: \\ Attributes are all hidden

_numerator: [int]
_denominator: [int > O]"""

def getNumerator(self): /
\ """Returns: Numerator of Fraction""" Getters and Setters.
def  init_ (self,n=0,d=1): r A

Initializerfor the class.

\ """Tnitializer: makes a Fraction"""
Defaults for parameters.

oo \ j
def _ add__ (self,q): r . )
l " Returns: Sum of self, g™ Python operator overloading

def normalize(self): 4 )

\ miputs Fraction in reduced form™ L Normal method definitions

10/29/15 Using Classes Effectively



Exercise: Design a (2D) Circle

e What are the attributes?
= What is the bare minimum we need?

" What are some extras we might want?

= What are the invariants?
* What are the methods?

" With just the one circle?

= With more than one circle?

10/29/15 Using Classes Effectively 22



Advanced Topic Warning!

The following will not be on the exam

It you ask “Will this be on the Exam”

we will be

10/29/15 Using Classes Effectively

23



Properties: Invisible Setters and Getters

class Fraction(object):

"""Instance attributes:
_numerator: [int]
_denominator: [int > O]"™""

@property

def numerator(self):

"""Numerator value of Fraction
Invariant: must be an int"""

return self. numerator

@numerator.setter

def numerator(self,value):
assert type(value) == int
self._numerator = value

10/29/15

>>>p = Fraction(1,2)
>>> X = p.numerator

Python

1 ; converts to

>>> x = p.numerator()

>>> p.numerator = 2

Python

1 ; converts to

>>> p.numerator(2)

Using Classes Effectively

24



Properties: Invisible Setters and Getters

class Fraction(object):
"""Instance attributes:

_numerator: [int]

Specifies that next method is
the getter for property of the
same name as the method

_denominator: [int > 0]"""

@property
def numerator(self):

"""Numerator value of Fraction Docstring describing property ]
Invariant: must be an int""" <|

return|self. numerator r
L Property uses hidden attribute.

@numerator.setter
def numerator(self,value):

. Specifies that next method is
assert type(value) == int the setter for property whose
self._numerator = value name is numerator.

10/29/15 Using Classes Effectively 25



Properties: Invisible Setters and Getters

class Fraction(object): e ~N
"""Tngtance attributes: Goal: Data Encapsulation
_numerator:  [int] Protecting your data from
_denominator: [int > 0]""" 7 ’
oproperty _ other, “clumsy’ users. )
def numerator(self): r N

"""Numerator value of Fraction
Invariant: must be an int"""

return self. numerator

@nu

10/29/15

L Only the getter is required!

J

~

If no setter, then the
attribute is “immutable”.

J

Replace Attributes w/ Properties
(Users cannot tell difference)

Using Classes Effectively 26



