10/23/16

Designing Types Clis il Making a Class into a Type

day of class!

e Type: set of values and the operations on them 1. Think about what values you want in the set
= int: (set: integers; ops: +,—, *,/,...) = What are the attributes? What values can they have?
= Time (set: times of day; ops: time span, before/after, ...) 2. Think about what operations you want
= Worker (set: all possible workers; ops: hire pay promote,...) = This often influences the previous question

= Rectangle (set: all axis-aligned rectangles in 2D;

o * To make (1) precise: write a class invariant
ops: contains, intersect, ...)

. . = Statement we promise to keep true after every method call
* To define a class, think of a real type you want to make « To make (2) precise: write method specifications
= Python gives you the tools, but does not do it for you ’
Y . & Y . Y = Statement of what method does/what it expects (preconditions)
= Physically, any object can take on any value

. 1 |
« Discipline is required to get what you want Write your code to make these statements true!

Planning out a Class Planning out a Class
class Time(object): class Rectangle(object):
"""Instances represent times of day. Class Invariant """Instances represent rectangular
Instance Attributes: : regions of the plane.
States what attributes are present . :
hour: hour of day [int in 0..23] and what values they can have. Instance Attributes: Class Invariant
min: minute of hour [int in 0..59]"") t: y coordinate of top edge [float] States what attributes are present
A statement that will always be L: x coordinate of left edge [float] d what values th h
. . true of any Time instance. b: ¥ coordinate of bottom edge [float] | |2R¢ What values they can have.
def __init__(self, hour, min): r: x coordinate of right edge [float] A statement that will always be
""The time hour:min. For all Rectangles, 1 <=r and b <=t."" true of any Rectangle instance.

Pre: hour in 0..23; min in 0..59"""

def __init__(self, t, 1, b,):

def increment(self, hours, mins): Method Specification """The rectangle [1, r] x [t, b] -
"""Move this time <hours> hours]- P Pre: args are floats; 1 <=r; b <=t""

Method Specification

. . . def area(self): States what the method does
Gives preconditions stating what ""Return: area of the rectangle."” }

is assumed true of the arguments. Gives preconditions stating what
def isPM(self): def intersection(self, other): is assumed true of the arguments.

"""Returns: this time is noon or later.""" e e osande describing
intersection of self with other."""

and <mins> minutes into the future. States what the method does.

Pre: hours is int >= 0; mins in 0..59"

Implementing an Initializer Implementing a Method

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59

def __init__(self, hour, min):
""The time hour:min. L.
Pre: hour in 0..23; min in 0..59"" This is true to start

This is true to start

S

‘What we are supposed

def increment(self, hours, mins): to accomplish
"""Move this time <hours> hours

n N and <mins> minutes into the future. This is also true to start

self.hour = hour Pre: hours [int] >= 0; mins in 0..59""™" 1S 1S also € 1O Std

s = it You put code here

self.min = self.min + mins ‘)

. = °
Instance variables: This should be true EENAREE = (XA < DS You put code here
hour: hour of day [int in 0..23
min: minute of hour [int in0..59] at the end

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59

This should be true
at the end

10/23/16

Enforce Method Preconditions with assert

class Time(object):
"""Instances represent times of day.

Instance Attributes:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

ny

def __init__(self, hour, min):
""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

Initializer creates/initializes all

of the instance attributes.

Asserts in initializer guarantee the
initial values satisfy the invariant.

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59"""
assert type(hour) == int
assert type (min) == int
assert hour >= 0 and
assert 0 <= min and min < 60

Asserts in other methods enforce
the method preconditions.

Hiding Methods From Access

¢ Hidden methods

e Put underscore in front of a

method will make it hidden
= Will not show up in help()
= But it is still there... HI

= Can be used as helpers
inside of the same class

= But it is bad style to use
them outside of this class

e Can do same for attributes

= Underscore makes it hidden

= Do not use outside of class

class Fraction(object):
""Instance attributes:
numerator: top [int]

l ! denominator: bottom [int > 0]""

def _is_denominator(self,d):

i

"""Return: True if d valid denom'

return type(d) == int and d

0]
Helper
- method
def __init__(self,n=0,d=1):

assert self._is_denominator(d)

self.numerator = n

self.denominator = d

Enforcing Invariants

Data Encapsulation

class Fraction(object): ¢ Idea: Restrict direct access

""nstance attributes: * Only access via methods

numerator: top | [int] = Use asserts to enforce them
denominator: botton} [int >0} o Examples:
def getNumerator(self):

"""Returns: numerator"""

nm

return self.numerator

¢ These are just comments! def setNumerator(self,value):

>>>p = Fraction(1,2)

"""Sets numerator to value
assert type(value) == int
self.numerator = value

>>> p.numerator = 'Hello'
* How do we prevent this?

* Idea: Force the user to only use methods
¢ Do not allow direct access of attributes

Setter Method

Getter Method

e Used to change an attribute

* Replaces all assignment
statements to the attribute

e Bad:
>>> f.numerator = 5

¢ Good:
>>> f setNumerator(5)

e Used to access an attribute

* Replaces all usage of
attribute in an expression

e Bad:
>>> x = 3*f.numerator
¢ Good:
>>> x = 3*f.getNumerator()

Data Encapsulation

Mutable vs. Immutable Attributes

class Fraction(object):

"""Instance attributes: Do this f()i)all of
_numerator: top [int] your attributes
_denominator: bottom [int > 0]"""
def getDenomenator(self):

) Naming Convention
"""Returns: numerator attribute""

return self._denomenator The underscore means

“should not access the

def setDenomenator(self, d): attribute directly.”

"""Alters denomenator to be d
Pre: d is an int > 0"

assert type(d) == int Precondition is same
assert 0 <d as attribute invariant.
self._denominator = d

Mutable

Immutable

 Can change value directly
= If class invariant met
= Example: t.color
* Has both getters and setters

= Setters allow you to change

= Enforce invariants w/ asserts

* Can’t change value directly
= May change “behind scenes”
= Example: t.x

* Has only a getter
= No setter means no change

= Getter allows limited access

(May ask you to differetiate on the exan)

